esp-idf/components/esp_ringbuf/ringbuf.c

1425 wiersze
64 KiB
C

/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/list.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/ringbuf.h"
#include "esp_heap_caps.h"
// ------------------------------------------------- Macros and Types --------------------------------------------------
//32-bit alignment macros
#define rbALIGN_MASK (0x03)
#define rbALIGN_SIZE( xSize ) ( ( xSize + rbALIGN_MASK ) & ~rbALIGN_MASK )
#define rbCHECK_ALIGNED( pvPtr ) ( ( ( UBaseType_t ) ( pvPtr ) & rbALIGN_MASK ) == 0 )
//Ring buffer flags
#define rbALLOW_SPLIT_FLAG ( ( UBaseType_t ) 1 ) //The ring buffer allows items to be split
#define rbBYTE_BUFFER_FLAG ( ( UBaseType_t ) 2 ) //The ring buffer is a byte buffer
#define rbBUFFER_FULL_FLAG ( ( UBaseType_t ) 4 ) //The ring buffer is currently full (write pointer == free pointer)
#define rbBUFFER_STATIC_FLAG ( ( UBaseType_t ) 8 ) //The ring buffer is statically allocated
#define rbUSING_QUEUE_SET ( ( UBaseType_t ) 16 ) //The ring buffer has been added to a queue set
//Item flags
#define rbITEM_FREE_FLAG ( ( UBaseType_t ) 1 ) //Item has been retrieved and returned by application, free to overwrite
#define rbITEM_DUMMY_DATA_FLAG ( ( UBaseType_t ) 2 ) //Data from here to end of the ring buffer is dummy data. Restart reading at start of head of the buffer
#define rbITEM_SPLIT_FLAG ( ( UBaseType_t ) 4 ) //Valid for RINGBUF_TYPE_ALLOWSPLIT, indicating that rest of the data is wrapped around
#define rbITEM_WRITTEN_FLAG ( ( UBaseType_t ) 8 ) //Item has been written to by the application, thus can be read
typedef struct {
//This size of this structure must be 32-bit aligned
size_t xItemLen;
UBaseType_t uxItemFlags;
} ItemHeader_t;
#define rbHEADER_SIZE sizeof(ItemHeader_t)
typedef struct RingbufferDefinition Ringbuffer_t;
typedef BaseType_t (*CheckItemFitsFunction_t)(Ringbuffer_t *pxRingbuffer, size_t xItemSize);
typedef void (*CopyItemFunction_t)(Ringbuffer_t *pxRingbuffer, const uint8_t *pcItem, size_t xItemSize);
typedef BaseType_t (*CheckItemAvailFunction_t) (Ringbuffer_t *pxRingbuffer);
typedef void *(*GetItemFunction_t)(Ringbuffer_t *pxRingbuffer, BaseType_t *pxIsSplit, size_t xMaxSize, size_t *pxItemSize);
typedef void (*ReturnItemFunction_t)(Ringbuffer_t *pxRingbuffer, uint8_t *pvItem);
typedef size_t (*GetCurMaxSizeFunction_t)(Ringbuffer_t *pxRingbuffer);
typedef struct RingbufferDefinition {
size_t xSize; //Size of the data storage
size_t xMaxItemSize; //Maximum item size
UBaseType_t uxRingbufferFlags; //Flags to indicate the type and status of ring buffer
CheckItemFitsFunction_t xCheckItemFits; //Function to check if item can currently fit in ring buffer
CopyItemFunction_t vCopyItem; //Function to copy item to ring buffer
GetItemFunction_t pvGetItem; //Function to get item from ring buffer
ReturnItemFunction_t vReturnItem; //Function to return item to ring buffer
GetCurMaxSizeFunction_t xGetCurMaxSize; //Function to get current free size
uint8_t *pucAcquire; //Acquire Pointer. Points to where the next item should be acquired.
uint8_t *pucWrite; //Write Pointer. Points to where the next item should be written
uint8_t *pucRead; //Read Pointer. Points to where the next item should be read from
uint8_t *pucFree; //Free Pointer. Points to the last item that has yet to be returned to the ring buffer
uint8_t *pucHead; //Pointer to the start of the ring buffer storage area
uint8_t *pucTail; //Pointer to the end of the ring buffer storage area
BaseType_t xItemsWaiting; //Number of items/bytes(for byte buffers) currently in ring buffer that have not yet been read
List_t xTasksWaitingToSend; //List of tasks that are blocked waiting to send/acquire onto this ring buffer. Stored in priority order.
List_t xTasksWaitingToReceive; //List of tasks that are blocked waiting to receive from this ring buffer. Stored in priority order.
QueueSetHandle_t xQueueSet; //Ring buffer's read queue set handle.
portMUX_TYPE mux; //Spinlock required for SMP
} Ringbuffer_t;
_Static_assert(sizeof(StaticRingbuffer_t) == sizeof(Ringbuffer_t), "StaticRingbuffer_t != Ringbuffer_t");
// ------------------------------------------------ Forward Declares ---------------------------------------------------
/*
* WARNING: All of the following static functions (except generic functions)
* ARE NOT THREAD SAFE. Therefore they should only be called within a critical
* section (using spin locks)
*/
//Initialize a ring buffer after space has been allocated for it
static void prvInitializeNewRingbuffer(size_t xBufferSize,
RingbufferType_t xBufferType,
Ringbuffer_t *pxNewRingbuffer,
uint8_t *pucRingbufferStorage);
//Calculate current amount of free space (in bytes) in the ring buffer
static size_t prvGetFreeSize(Ringbuffer_t *pxRingbuffer);
//Checks if an item/data is currently available for retrieval
static BaseType_t prvCheckItemAvail(Ringbuffer_t *pxRingbuffer);
//Checks if an item will currently fit in a no-split/allow-split ring buffer
static BaseType_t prvCheckItemFitsDefault( Ringbuffer_t *pxRingbuffer, size_t xItemSize);
//Checks if an item will currently fit in a byte buffer
static BaseType_t prvCheckItemFitsByteBuffer( Ringbuffer_t *pxRingbuffer, size_t xItemSize);
/*
Copies an item to a no-split ring buffer
Entry:
- Must have already guaranteed there is sufficient space for item by calling prvCheckItemFitsDefault()
Exit:
- New item copied into ring buffer
- pucAcquire and pucWrite updated.
- Dummy item added if necessary
*/
static void prvCopyItemNoSplit(Ringbuffer_t *pxRingbuffer, const uint8_t *pucItem, size_t xItemSize);
/*
Copies an item to a allow-split ring buffer
Entry:
- Must have already guaranteed there is sufficient space for item by calling prvCheckItemFitsDefault()
Exit:
- New item copied into ring buffer
- pucAcquire and pucWrite updated
- Item may be split
*/
static void prvCopyItemAllowSplit(Ringbuffer_t *pxRingbuffer, const uint8_t *pucItem, size_t xItemSize);
//Copies an item to a byte buffer. Only call this function after calling prvCheckItemFitsByteBuffer()
static void prvCopyItemByteBuf(Ringbuffer_t *pxRingbuffer, const uint8_t *pucItem, size_t xItemSize);
//Retrieve item from no-split/allow-split ring buffer. *pxIsSplit is set to pdTRUE if the retrieved item is split
/*
Entry:
- Must have already guaranteed that there is an item available for retrieval by calling prvCheckItemAvail()
- Guaranteed that pucREAD points to a valid item (i.e., not a dummy item)
Exit:
- Item is returned. Only first half returned if split
- pucREAD updated to point to next valid item to read, or equals to pucWrite if there are no more valid items to read
- pucREAD update must skip over dummy items
*/
static void *prvGetItemDefault(Ringbuffer_t *pxRingbuffer,
BaseType_t *pxIsSplit,
size_t xUnusedParam,
size_t *pxItemSize);
//Retrieve data from byte buffer. If xMaxSize is 0, all continuous data is retrieved
static void *prvGetItemByteBuf(Ringbuffer_t *pxRingbuffer,
BaseType_t *pxUnusedParam,
size_t xMaxSize,
size_t *pxItemSize);
/*
Return an item to a split/no-split ring buffer
Exit:
- Item is marked free rbITEM_FREE_FLAG
- pucFree is progressed as far as possible, skipping over already freed items or dummy items
*/
static void prvReturnItemDefault(Ringbuffer_t *pxRingbuffer, uint8_t *pucItem);
//Return data to a byte buffer
static void prvReturnItemByteBuf(Ringbuffer_t *pxRingbuffer, uint8_t *pucItem);
//Get the maximum size an item that can currently have if sent to a no-split ring buffer
static size_t prvGetCurMaxSizeNoSplit(Ringbuffer_t *pxRingbuffer);
//Get the maximum size an item that can currently have if sent to a allow-split ring buffer
static size_t prvGetCurMaxSizeAllowSplit(Ringbuffer_t *pxRingbuffer);
//Get the maximum size an item that can currently have if sent to a byte buffer
static size_t prvGetCurMaxSizeByteBuf(Ringbuffer_t *pxRingbuffer);
/*
Generic function used to send or acquire an item/buffer.
- If sending, set ppvItem to NULL. pvItem remains unchanged on failure.
- If acquiring, set pvItem to NULL. ppvItem remains unchanged on failure.
*/
static BaseType_t prvSendAcquireGeneric(Ringbuffer_t *pxRingbuffer,
const void *pvItem,
void **ppvItem,
size_t xItemSize,
TickType_t xTicksToWait);
/*
Generic function used to retrieve an item/data from ring buffers. If called on
an allow-split buffer, and pvItem2 and xItemSize2 are not NULL, both parts of
a split item will be retrieved. xMaxSize will only take effect if called on
byte buffers. xItemSize must remain unchanged if no item is retrieved.
*/
static BaseType_t prvReceiveGeneric(Ringbuffer_t *pxRingbuffer,
void **pvItem1,
void **pvItem2,
size_t *xItemSize1,
size_t *xItemSize2,
size_t xMaxSize,
TickType_t xTicksToWait);
//From ISR version of prvReceiveGeneric()
static BaseType_t prvReceiveGenericFromISR(Ringbuffer_t *pxRingbuffer,
void **pvItem1,
void **pvItem2,
size_t *xItemSize1,
size_t *xItemSize2,
size_t xMaxSize);
// ------------------------------------------------ Static Functions ---------------------------------------------------
static void prvInitializeNewRingbuffer(size_t xBufferSize,
RingbufferType_t xBufferType,
Ringbuffer_t *pxNewRingbuffer,
uint8_t *pucRingbufferStorage)
{
//Initialize values
pxNewRingbuffer->xSize = xBufferSize;
pxNewRingbuffer->pucHead = pucRingbufferStorage;
pxNewRingbuffer->pucTail = pucRingbufferStorage + xBufferSize;
pxNewRingbuffer->pucFree = pucRingbufferStorage;
pxNewRingbuffer->pucRead = pucRingbufferStorage;
pxNewRingbuffer->pucWrite = pucRingbufferStorage;
pxNewRingbuffer->pucAcquire = pucRingbufferStorage;
pxNewRingbuffer->xItemsWaiting = 0;
pxNewRingbuffer->uxRingbufferFlags = 0;
//Initialize type dependent values and function pointers
if (xBufferType == RINGBUF_TYPE_NOSPLIT) {
pxNewRingbuffer->xCheckItemFits = prvCheckItemFitsDefault;
pxNewRingbuffer->vCopyItem = prvCopyItemNoSplit;
pxNewRingbuffer->pvGetItem = prvGetItemDefault;
pxNewRingbuffer->vReturnItem = prvReturnItemDefault;
/*
* Worst case scenario is when the read/write/acquire/free pointers are all
* pointing to the halfway point of the buffer.
*/
pxNewRingbuffer->xMaxItemSize = rbALIGN_SIZE(pxNewRingbuffer->xSize / 2) - rbHEADER_SIZE;
pxNewRingbuffer->xGetCurMaxSize = prvGetCurMaxSizeNoSplit;
} else if (xBufferType == RINGBUF_TYPE_ALLOWSPLIT) {
pxNewRingbuffer->uxRingbufferFlags |= rbALLOW_SPLIT_FLAG;
pxNewRingbuffer->xCheckItemFits = prvCheckItemFitsDefault;
pxNewRingbuffer->vCopyItem = prvCopyItemAllowSplit;
pxNewRingbuffer->pvGetItem = prvGetItemDefault;
pxNewRingbuffer->vReturnItem = prvReturnItemDefault;
//Worst case an item is split into two, incurring two headers of overhead
pxNewRingbuffer->xMaxItemSize = pxNewRingbuffer->xSize - (sizeof(ItemHeader_t) * 2);
pxNewRingbuffer->xGetCurMaxSize = prvGetCurMaxSizeAllowSplit;
} else { //Byte Buffer
pxNewRingbuffer->uxRingbufferFlags |= rbBYTE_BUFFER_FLAG;
pxNewRingbuffer->xCheckItemFits = prvCheckItemFitsByteBuffer;
pxNewRingbuffer->vCopyItem = prvCopyItemByteBuf;
pxNewRingbuffer->pvGetItem = prvGetItemByteBuf;
pxNewRingbuffer->vReturnItem = prvReturnItemByteBuf;
//Byte buffers do not incur any overhead
pxNewRingbuffer->xMaxItemSize = pxNewRingbuffer->xSize;
pxNewRingbuffer->xGetCurMaxSize = prvGetCurMaxSizeByteBuf;
}
vListInitialise(&pxNewRingbuffer->xTasksWaitingToSend);
vListInitialise(&pxNewRingbuffer->xTasksWaitingToReceive);
pxNewRingbuffer->xQueueSet = NULL;
portMUX_INITIALIZE(&pxNewRingbuffer->mux);
}
static size_t prvGetFreeSize(Ringbuffer_t *pxRingbuffer)
{
size_t xReturn;
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) {
xReturn = 0;
} else {
BaseType_t xFreeSize = pxRingbuffer->pucFree - pxRingbuffer->pucAcquire;
//Check if xFreeSize has underflowed
if (xFreeSize <= 0) {
xFreeSize += pxRingbuffer->xSize;
}
xReturn = xFreeSize;
}
configASSERT(xReturn <= pxRingbuffer->xSize);
return xReturn;
}
static BaseType_t prvCheckItemFitsDefault( Ringbuffer_t *pxRingbuffer, size_t xItemSize)
{
//Check arguments and buffer state
configASSERT(rbCHECK_ALIGNED(pxRingbuffer->pucAcquire)); //pucAcquire is always aligned in no-split/allow-split ring buffers
configASSERT(pxRingbuffer->pucAcquire >= pxRingbuffer->pucHead && pxRingbuffer->pucAcquire < pxRingbuffer->pucTail); //Check write pointer is within bounds
size_t xTotalItemSize = rbALIGN_SIZE(xItemSize) + rbHEADER_SIZE; //Rounded up aligned item size with header
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucFree) {
//Buffer is either complete empty or completely full
return (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) ? pdFALSE : pdTRUE;
}
if (pxRingbuffer->pucFree > pxRingbuffer->pucAcquire) {
//Free space does not wrap around
return (xTotalItemSize <= pxRingbuffer->pucFree - pxRingbuffer->pucAcquire) ? pdTRUE : pdFALSE;
}
//Free space wraps around
if (xTotalItemSize <= pxRingbuffer->pucTail - pxRingbuffer->pucAcquire) {
return pdTRUE; //Item fits without wrapping around
}
//Check if item fits by wrapping
if (pxRingbuffer->uxRingbufferFlags & rbALLOW_SPLIT_FLAG) {
//Allow split wrapping incurs an extra header
return (xTotalItemSize + rbHEADER_SIZE <= pxRingbuffer->xSize - (pxRingbuffer->pucAcquire - pxRingbuffer->pucFree)) ? pdTRUE : pdFALSE;
} else {
return (xTotalItemSize <= pxRingbuffer->pucFree - pxRingbuffer->pucHead) ? pdTRUE : pdFALSE;
}
}
static BaseType_t prvCheckItemFitsByteBuffer( Ringbuffer_t *pxRingbuffer, size_t xItemSize)
{
//Check arguments and buffer state
configASSERT(pxRingbuffer->pucAcquire >= pxRingbuffer->pucHead && pxRingbuffer->pucAcquire < pxRingbuffer->pucTail); //Check acquire pointer is within bounds
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucFree) {
//Buffer is either complete empty or completely full
return (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) ? pdFALSE : pdTRUE;
}
if (pxRingbuffer->pucFree > pxRingbuffer->pucAcquire) {
//Free space does not wrap around
return (xItemSize <= pxRingbuffer->pucFree - pxRingbuffer->pucAcquire) ? pdTRUE : pdFALSE;
}
//Free space wraps around
return (xItemSize <= pxRingbuffer->xSize - (pxRingbuffer->pucAcquire - pxRingbuffer->pucFree)) ? pdTRUE : pdFALSE;
}
static uint8_t* prvAcquireItemNoSplit(Ringbuffer_t *pxRingbuffer, size_t xItemSize)
{
//Check arguments and buffer state
size_t xAlignedItemSize = rbALIGN_SIZE(xItemSize); //Rounded up aligned item size
size_t xRemLen = pxRingbuffer->pucTail - pxRingbuffer->pucAcquire; //Length from pucAcquire until end of buffer
configASSERT(rbCHECK_ALIGNED(pxRingbuffer->pucAcquire)); //pucAcquire is always aligned in no-split ring buffers
configASSERT(pxRingbuffer->pucAcquire >= pxRingbuffer->pucHead && pxRingbuffer->pucAcquire < pxRingbuffer->pucTail); //Check write pointer is within bounds
configASSERT(xRemLen >= rbHEADER_SIZE); //Remaining length must be able to at least fit an item header
//If remaining length can't fit item, set as dummy data and wrap around
if (xRemLen < xAlignedItemSize + rbHEADER_SIZE) {
ItemHeader_t *pxDummy = (ItemHeader_t *)pxRingbuffer->pucAcquire;
pxDummy->uxItemFlags = rbITEM_DUMMY_DATA_FLAG; //Set remaining length as dummy data
pxDummy->xItemLen = 0; //Dummy data should have no length
pxRingbuffer->pucAcquire = pxRingbuffer->pucHead; //Reset acquire pointer to wrap around
}
//Item should be guaranteed to fit at this point. Set item header and copy data
ItemHeader_t *pxHeader = (ItemHeader_t *)pxRingbuffer->pucAcquire;
pxHeader->xItemLen = xItemSize;
pxHeader->uxItemFlags = 0;
//hold the buffer address without touching pucWrite
uint8_t* item_address = pxRingbuffer->pucAcquire + rbHEADER_SIZE;
pxRingbuffer->pucAcquire += rbHEADER_SIZE + xAlignedItemSize; //Advance pucAcquire past header and the item to next aligned address
//After the allocation, add some padding after the buffer and correct the flags
//If current remaining length can't fit a header, wrap around write pointer
if (pxRingbuffer->pucTail - pxRingbuffer->pucAcquire < rbHEADER_SIZE) {
pxRingbuffer->pucAcquire = pxRingbuffer->pucHead; //Wrap around pucAcquire
}
//Check if buffer is full
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucFree) {
//Mark the buffer as full to distinguish with an empty buffer
pxRingbuffer->uxRingbufferFlags |= rbBUFFER_FULL_FLAG;
}
return item_address;
}
static void prvSendItemDoneNoSplit(Ringbuffer_t *pxRingbuffer, uint8_t* pucItem)
{
//Check arguments and buffer state
configASSERT(rbCHECK_ALIGNED(pucItem));
configASSERT(pucItem >= pxRingbuffer->pucHead);
configASSERT(pucItem <= pxRingbuffer->pucTail); //Inclusive of pucTail in the case of zero length item at the very end
//Get and check header of the item
ItemHeader_t *pxCurHeader = (ItemHeader_t *)(pucItem - rbHEADER_SIZE);
configASSERT(pxCurHeader->xItemLen <= pxRingbuffer->xMaxItemSize);
configASSERT((pxCurHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG) == 0); //Dummy items should never have been written
configASSERT((pxCurHeader->uxItemFlags & rbITEM_WRITTEN_FLAG) == 0); //Indicates item has already been written before
pxCurHeader->uxItemFlags &= ~rbITEM_SPLIT_FLAG; //Clear wrap flag if set (not strictly necessary)
pxCurHeader->uxItemFlags |= rbITEM_WRITTEN_FLAG; //Mark as written
pxRingbuffer->xItemsWaiting++;
/*
* Items might not be written in the order they were acquired. Move the
* write pointer up to the next item that has not been marked as written (by
* written flag) or up till the acquire pointer. When advancing the write
* pointer, items that have already been written or items with dummy data
* should be skipped over
*/
pxCurHeader = (ItemHeader_t *)pxRingbuffer->pucWrite;
//Skip over Items that have already been written or are dummy items
while (((pxCurHeader->uxItemFlags & rbITEM_WRITTEN_FLAG) || (pxCurHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG)) && pxRingbuffer->pucWrite != pxRingbuffer->pucAcquire) {
if (pxCurHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG) {
pxCurHeader->uxItemFlags |= rbITEM_WRITTEN_FLAG; //Mark as freed (not strictly necessary but adds redundancy)
pxRingbuffer->pucWrite = pxRingbuffer->pucHead; //Wrap around due to dummy data
} else {
//Item with data that has already been written, advance write pointer past this item
size_t xAlignedItemSize = rbALIGN_SIZE(pxCurHeader->xItemLen);
pxRingbuffer->pucWrite += xAlignedItemSize + rbHEADER_SIZE;
//Redundancy check to ensure write pointer has not overshot buffer bounds
configASSERT(pxRingbuffer->pucWrite <= pxRingbuffer->pucHead + pxRingbuffer->xSize);
}
//Check if pucWrite requires wrap around
if ((pxRingbuffer->pucTail - pxRingbuffer->pucWrite) < rbHEADER_SIZE) {
pxRingbuffer->pucWrite = pxRingbuffer->pucHead;
}
pxCurHeader = (ItemHeader_t *)pxRingbuffer->pucWrite; //Update header to point to item
}
}
static void prvCopyItemNoSplit(Ringbuffer_t *pxRingbuffer, const uint8_t *pucItem, size_t xItemSize)
{
uint8_t* item_addr = prvAcquireItemNoSplit(pxRingbuffer, xItemSize);
memcpy(item_addr, pucItem, xItemSize);
prvSendItemDoneNoSplit(pxRingbuffer, item_addr);
}
static void prvCopyItemAllowSplit(Ringbuffer_t *pxRingbuffer, const uint8_t *pucItem, size_t xItemSize)
{
//Check arguments and buffer state
size_t xAlignedItemSize = rbALIGN_SIZE(xItemSize); //Rounded up aligned item size
size_t xRemLen = pxRingbuffer->pucTail - pxRingbuffer->pucAcquire; //Length from pucAcquire until end of buffer
configASSERT(rbCHECK_ALIGNED(pxRingbuffer->pucAcquire)); //pucAcquire is always aligned in split ring buffers
configASSERT(pxRingbuffer->pucAcquire >= pxRingbuffer->pucHead && pxRingbuffer->pucAcquire < pxRingbuffer->pucTail); //Check write pointer is within bounds
configASSERT(xRemLen >= rbHEADER_SIZE); //Remaining length must be able to at least fit an item header
//Split item if necessary
if (xRemLen < xAlignedItemSize + rbHEADER_SIZE) {
//Write first part of the item
ItemHeader_t *pxFirstHeader = (ItemHeader_t *)pxRingbuffer->pucAcquire;
pxFirstHeader->uxItemFlags = 0;
pxFirstHeader->xItemLen = xRemLen - rbHEADER_SIZE; //Fill remaining length with first part
pxRingbuffer->pucAcquire += rbHEADER_SIZE; //Advance pucAcquire past header
xRemLen -= rbHEADER_SIZE;
if (xRemLen > 0) {
memcpy(pxRingbuffer->pucAcquire, pucItem, xRemLen);
pxRingbuffer->xItemsWaiting++;
//Update item arguments to account for data already copied
pucItem += xRemLen;
xItemSize -= xRemLen;
xAlignedItemSize -= xRemLen;
pxFirstHeader->uxItemFlags |= rbITEM_SPLIT_FLAG; //There must be more data
} else {
//Remaining length was only large enough to fit header
pxFirstHeader->uxItemFlags |= rbITEM_DUMMY_DATA_FLAG; //Item will completely be stored in 2nd part
}
pxRingbuffer->pucAcquire = pxRingbuffer->pucHead; //Reset acquire pointer to start of buffer
}
//Item (whole or second part) should be guaranteed to fit at this point
ItemHeader_t *pxSecondHeader = (ItemHeader_t *)pxRingbuffer->pucAcquire;
pxSecondHeader->xItemLen = xItemSize;
pxSecondHeader->uxItemFlags = 0;
pxRingbuffer->pucAcquire += rbHEADER_SIZE; //Advance acquire pointer past header
memcpy(pxRingbuffer->pucAcquire, pucItem, xItemSize);
pxRingbuffer->xItemsWaiting++;
pxRingbuffer->pucAcquire += xAlignedItemSize; //Advance pucAcquire past item to next aligned address
//If current remaining length can't fit a header, wrap around write pointer
if (pxRingbuffer->pucTail - pxRingbuffer->pucAcquire < rbHEADER_SIZE) {
pxRingbuffer->pucAcquire = pxRingbuffer->pucHead; //Wrap around pucAcquire
}
//Check if buffer is full
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucFree) {
//Mark the buffer as full to distinguish with an empty buffer
pxRingbuffer->uxRingbufferFlags |= rbBUFFER_FULL_FLAG;
}
//currently the Split mode is not supported, pucWrite tracks the pucAcquire
pxRingbuffer->pucWrite = pxRingbuffer->pucAcquire;
}
static void prvCopyItemByteBuf(Ringbuffer_t *pxRingbuffer, const uint8_t *pucItem, size_t xItemSize)
{
//Check arguments and buffer state
configASSERT(pxRingbuffer->pucAcquire >= pxRingbuffer->pucHead && pxRingbuffer->pucAcquire < pxRingbuffer->pucTail); //Check acquire pointer is within bounds
size_t xRemLen = pxRingbuffer->pucTail - pxRingbuffer->pucAcquire; //Length from pucAcquire until end of buffer
if (xRemLen < xItemSize) {
//Copy as much as possible into remaining length
memcpy(pxRingbuffer->pucAcquire, pucItem, xRemLen);
pxRingbuffer->xItemsWaiting += xRemLen;
//Update item arguments to account for data already written
pucItem += xRemLen;
xItemSize -= xRemLen;
pxRingbuffer->pucAcquire = pxRingbuffer->pucHead; //Reset acquire pointer to start of buffer
}
//Copy all or remaining portion of the item
memcpy(pxRingbuffer->pucAcquire, pucItem, xItemSize);
pxRingbuffer->xItemsWaiting += xItemSize;
pxRingbuffer->pucAcquire += xItemSize;
//Wrap around pucAcquire if it reaches the end
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucTail) {
pxRingbuffer->pucAcquire = pxRingbuffer->pucHead;
}
//Check if buffer is full
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucFree) {
pxRingbuffer->uxRingbufferFlags |= rbBUFFER_FULL_FLAG; //Mark the buffer as full to avoid confusion with an empty buffer
}
//Currently, acquiring memory is not supported in byte mode. pucWrite tracks the pucAcquire.
pxRingbuffer->pucWrite = pxRingbuffer->pucAcquire;
}
static BaseType_t prvCheckItemAvail(Ringbuffer_t *pxRingbuffer)
{
if ((pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG) && pxRingbuffer->pucRead != pxRingbuffer->pucFree) {
return pdFALSE; //Byte buffers do not allow multiple retrievals before return
}
if ((pxRingbuffer->xItemsWaiting > 0) && ((pxRingbuffer->pucRead != pxRingbuffer->pucWrite) || (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG))) {
return pdTRUE; //Items/data available for retrieval
} else {
return pdFALSE; //No items/data available for retrieval
}
}
static void *prvGetItemDefault(Ringbuffer_t *pxRingbuffer,
BaseType_t *pxIsSplit,
size_t xUnusedParam,
size_t *pxItemSize)
{
//Check arguments and buffer state
ItemHeader_t *pxHeader = (ItemHeader_t *)pxRingbuffer->pucRead;
configASSERT(pxIsSplit != NULL);
configASSERT((pxRingbuffer->xItemsWaiting > 0) && ((pxRingbuffer->pucRead != pxRingbuffer->pucWrite) || (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG))); //Check there are items to be read
configASSERT(rbCHECK_ALIGNED(pxRingbuffer->pucRead)); //pucRead is always aligned in split ring buffers
configASSERT(pxRingbuffer->pucRead >= pxRingbuffer->pucHead && pxRingbuffer->pucRead < pxRingbuffer->pucTail); //Check read pointer is within bounds
configASSERT((pxHeader->xItemLen <= pxRingbuffer->xMaxItemSize) || (pxHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG));
uint8_t *pcReturn;
//Wrap around if dummy data (dummy data indicates wrap around in no-split buffers)
if (pxHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG) {
pxRingbuffer->pucRead = pxRingbuffer->pucHead;
//Check for errors with the next item
pxHeader = (ItemHeader_t *)pxRingbuffer->pucRead;
configASSERT(pxHeader->xItemLen <= pxRingbuffer->xMaxItemSize);
}
pcReturn = pxRingbuffer->pucRead + rbHEADER_SIZE; //Get pointer to part of item containing data (point past the header)
if (pxHeader->xItemLen == 0) {
//Inclusive of pucTail for special case where item of zero length just fits at the end of the buffer
configASSERT(pcReturn >= pxRingbuffer->pucHead && pcReturn <= pxRingbuffer->pucTail);
} else {
//Exclusive of pucTail if length is larger than zero, pcReturn should never point to pucTail
configASSERT(pcReturn >= pxRingbuffer->pucHead && pcReturn < pxRingbuffer->pucTail);
}
*pxItemSize = pxHeader->xItemLen; //Get length of item
pxRingbuffer->xItemsWaiting --; //Update item count
*pxIsSplit = (pxHeader->uxItemFlags & rbITEM_SPLIT_FLAG) ? pdTRUE : pdFALSE;
pxRingbuffer->pucRead += rbHEADER_SIZE + rbALIGN_SIZE(pxHeader->xItemLen); //Update pucRead
//Check if pucRead requires wrap around
if ((pxRingbuffer->pucTail - pxRingbuffer->pucRead) < rbHEADER_SIZE) {
pxRingbuffer->pucRead = pxRingbuffer->pucHead;
}
return (void *)pcReturn;
}
static void *prvGetItemByteBuf(Ringbuffer_t *pxRingbuffer,
BaseType_t *pxUnusedParam,
size_t xMaxSize,
size_t *pxItemSize)
{
//Check arguments and buffer state
configASSERT((pxRingbuffer->xItemsWaiting > 0) && ((pxRingbuffer->pucRead != pxRingbuffer->pucWrite) || (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG))); //Check there are items to be read
configASSERT(pxRingbuffer->pucRead >= pxRingbuffer->pucHead && pxRingbuffer->pucRead < pxRingbuffer->pucTail); //Check read pointer is within bounds
configASSERT(pxRingbuffer->pucRead == pxRingbuffer->pucFree);
uint8_t *ret = pxRingbuffer->pucRead;
if ((pxRingbuffer->pucRead > pxRingbuffer->pucWrite) || (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG)) { //Available data wraps around
//Return contiguous piece from read pointer until buffer tail, or xMaxSize
if (xMaxSize == 0 || pxRingbuffer->pucTail - pxRingbuffer->pucRead <= xMaxSize) {
//All contiguous data from read pointer to tail
*pxItemSize = pxRingbuffer->pucTail - pxRingbuffer->pucRead;
pxRingbuffer->xItemsWaiting -= pxRingbuffer->pucTail - pxRingbuffer->pucRead;
pxRingbuffer->pucRead = pxRingbuffer->pucHead; //Wrap around read pointer
} else {
//Return xMaxSize amount of data
*pxItemSize = xMaxSize;
pxRingbuffer->xItemsWaiting -= xMaxSize;
pxRingbuffer->pucRead += xMaxSize; //Advance read pointer past retrieved data
}
} else { //Available data is contiguous between read and write pointer
if (xMaxSize == 0 || pxRingbuffer->pucWrite - pxRingbuffer->pucRead <= xMaxSize) {
//Return all contiguous data from read to write pointer
*pxItemSize = pxRingbuffer->pucWrite - pxRingbuffer->pucRead;
pxRingbuffer->xItemsWaiting -= pxRingbuffer->pucWrite - pxRingbuffer->pucRead;
pxRingbuffer->pucRead = pxRingbuffer->pucWrite;
} else {
//Return xMaxSize data from read pointer
*pxItemSize = xMaxSize;
pxRingbuffer->xItemsWaiting -= xMaxSize;
pxRingbuffer->pucRead += xMaxSize; //Advance read pointer past retrieved data
}
}
return (void *)ret;
}
static void prvReturnItemDefault(Ringbuffer_t *pxRingbuffer, uint8_t *pucItem)
{
//Check arguments and buffer state
configASSERT(rbCHECK_ALIGNED(pucItem));
configASSERT(pucItem >= pxRingbuffer->pucHead);
configASSERT(pucItem <= pxRingbuffer->pucTail); //Inclusive of pucTail in the case of zero length item at the very end
//Get and check header of the item
ItemHeader_t *pxCurHeader = (ItemHeader_t *)(pucItem - rbHEADER_SIZE);
configASSERT(pxCurHeader->xItemLen <= pxRingbuffer->xMaxItemSize);
configASSERT((pxCurHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG) == 0); //Dummy items should never have been read
configASSERT((pxCurHeader->uxItemFlags & rbITEM_FREE_FLAG) == 0); //Indicates item has already been returned before
pxCurHeader->uxItemFlags &= ~rbITEM_SPLIT_FLAG; //Clear wrap flag if set (not strictly necessary)
pxCurHeader->uxItemFlags |= rbITEM_FREE_FLAG; //Mark as free
/*
* Items might not be returned in the order they were retrieved. Move the free pointer
* up to the next item that has not been marked as free (by free flag) or up
* till the read pointer. When advancing the free pointer, items that have already been
* freed or items with dummy data should be skipped over
*/
pxCurHeader = (ItemHeader_t *)pxRingbuffer->pucFree;
//Skip over Items that have already been freed or are dummy items
while (((pxCurHeader->uxItemFlags & rbITEM_FREE_FLAG) || (pxCurHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG)) && pxRingbuffer->pucFree != pxRingbuffer->pucRead) {
if (pxCurHeader->uxItemFlags & rbITEM_DUMMY_DATA_FLAG) {
pxCurHeader->uxItemFlags |= rbITEM_FREE_FLAG; //Mark as freed (not strictly necessary but adds redundancy)
pxRingbuffer->pucFree = pxRingbuffer->pucHead; //Wrap around due to dummy data
} else {
//Item with data that has already been freed, advance free pointer past this item
size_t xAlignedItemSize = rbALIGN_SIZE(pxCurHeader->xItemLen);
pxRingbuffer->pucFree += xAlignedItemSize + rbHEADER_SIZE;
//Redundancy check to ensure free pointer has not overshot buffer bounds
configASSERT(pxRingbuffer->pucFree <= pxRingbuffer->pucHead + pxRingbuffer->xSize);
}
//Check if pucFree requires wrap around
if ((pxRingbuffer->pucTail - pxRingbuffer->pucFree) < rbHEADER_SIZE) {
pxRingbuffer->pucFree = pxRingbuffer->pucHead;
}
pxCurHeader = (ItemHeader_t *)pxRingbuffer->pucFree; //Update header to point to item
}
//Check if the buffer full flag should be reset
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) {
if (pxRingbuffer->pucFree != pxRingbuffer->pucAcquire) {
pxRingbuffer->uxRingbufferFlags &= ~rbBUFFER_FULL_FLAG;
} else if (pxRingbuffer->pucFree == pxRingbuffer->pucAcquire && pxRingbuffer->pucFree == pxRingbuffer->pucRead) {
//Special case where a full buffer is completely freed in one go
pxRingbuffer->uxRingbufferFlags &= ~rbBUFFER_FULL_FLAG;
}
}
}
static void prvReturnItemByteBuf(Ringbuffer_t *pxRingbuffer, uint8_t *pucItem)
{
//Check pointer points to address inside buffer
configASSERT((uint8_t *)pucItem >= pxRingbuffer->pucHead);
configASSERT((uint8_t *)pucItem < pxRingbuffer->pucTail);
//Free the read memory. Simply moves free pointer to read pointer as byte buffers do not allow multiple outstanding reads
pxRingbuffer->pucFree = pxRingbuffer->pucRead;
//If buffer was full before, reset full flag as free pointer has moved
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) {
pxRingbuffer->uxRingbufferFlags &= ~rbBUFFER_FULL_FLAG;
}
}
static size_t prvGetCurMaxSizeNoSplit(Ringbuffer_t *pxRingbuffer)
{
BaseType_t xFreeSize;
//Check if buffer is full
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) {
return 0;
}
if (pxRingbuffer->pucAcquire < pxRingbuffer->pucFree) {
//Free space is contiguous between pucAcquire and pucFree
xFreeSize = pxRingbuffer->pucFree - pxRingbuffer->pucAcquire;
} else {
//Free space wraps around (or overlapped at pucHead), select largest
//contiguous free space as no-split items require contiguous space
size_t xSize1 = pxRingbuffer->pucTail - pxRingbuffer->pucAcquire;
size_t xSize2 = pxRingbuffer->pucFree - pxRingbuffer->pucHead;
xFreeSize = (xSize1 > xSize2) ? xSize1 : xSize2;
}
//No-split ring buffer items need space for a header
xFreeSize -= rbHEADER_SIZE;
//Check for xFreeSize < 0 before checking xFreeSize > pxRingbuffer->xMaxItemSize
//to avoid incorrect comparison operation when xFreeSize is negative
if (xFreeSize < 0) {
//Occurs when free space is less than header size
xFreeSize = 0;
} else if (xFreeSize > pxRingbuffer->xMaxItemSize) {
//Limit free size to be within bounds
xFreeSize = pxRingbuffer->xMaxItemSize;
}
return xFreeSize;
}
static size_t prvGetCurMaxSizeAllowSplit(Ringbuffer_t *pxRingbuffer)
{
BaseType_t xFreeSize;
//Check if buffer is full
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) {
return 0;
}
if (pxRingbuffer->pucAcquire == pxRingbuffer->pucHead && pxRingbuffer->pucFree == pxRingbuffer->pucHead) {
//Check for special case where pucAcquire and pucFree are both at pucHead
xFreeSize = pxRingbuffer->xSize - rbHEADER_SIZE;
} else if (pxRingbuffer->pucAcquire < pxRingbuffer->pucFree) {
//Free space is contiguous between pucAcquire and pucFree, requires single header
xFreeSize = (pxRingbuffer->pucFree - pxRingbuffer->pucAcquire) - rbHEADER_SIZE;
} else {
//Free space wraps around, requires two headers
xFreeSize = (pxRingbuffer->pucFree - pxRingbuffer->pucHead) +
(pxRingbuffer->pucTail - pxRingbuffer->pucAcquire) -
(rbHEADER_SIZE * 2);
}
//Check for xFreeSize < 0 before checking xFreeSize > pxRingbuffer->xMaxItemSize
//to avoid incorrect comparison operation when xFreeSize is negative
if (xFreeSize < 0) {
xFreeSize = 0;
} else if (xFreeSize > pxRingbuffer->xMaxItemSize) {
//Limit free size to be within bounds
xFreeSize = pxRingbuffer->xMaxItemSize;
}
return xFreeSize;
}
static size_t prvGetCurMaxSizeByteBuf(Ringbuffer_t *pxRingbuffer)
{
BaseType_t xFreeSize;
//Check if buffer is full
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_FULL_FLAG) {
return 0;
}
/*
* Return whatever space is available depending on relative positions of the free
* pointer and Acquire pointer. There is no overhead of headers in this mode
*/
xFreeSize = pxRingbuffer->pucFree - pxRingbuffer->pucAcquire;
if (xFreeSize <= 0) {
xFreeSize += pxRingbuffer->xSize;
}
return xFreeSize;
}
static BaseType_t prvSendAcquireGeneric(Ringbuffer_t *pxRingbuffer,
const void *pvItem,
void **ppvItem,
size_t xItemSize,
TickType_t xTicksToWait)
{
BaseType_t xReturn = pdFALSE;
BaseType_t xExitLoop = pdFALSE;
BaseType_t xEntryTimeSet = pdFALSE;
BaseType_t xNotifyQueueSet = pdFALSE;
TimeOut_t xTimeOut;
while (xExitLoop == pdFALSE) {
portENTER_CRITICAL(&pxRingbuffer->mux);
if (pxRingbuffer->xCheckItemFits(pxRingbuffer, xItemSize) == pdTRUE) {
//xItemSize will fit. Copy or acquire the buffer immediately
if (ppvItem) {
//Acquire the buffer
*ppvItem = prvAcquireItemNoSplit(pxRingbuffer, xItemSize);
} else {
//Copy item into buffer
pxRingbuffer->vCopyItem(pxRingbuffer, pvItem, xItemSize);
if (pxRingbuffer->xQueueSet) {
//If ring buffer was added to a queue set, notify the queue set
xNotifyQueueSet = pdTRUE;
} else {
//If a task was waiting for data to arrive on the ring buffer, unblock it immediately.
if (listLIST_IS_EMPTY(&pxRingbuffer->xTasksWaitingToReceive) == pdFALSE) {
if (xTaskRemoveFromEventList(&pxRingbuffer->xTasksWaitingToReceive) == pdTRUE) {
//The unblocked task will preempt us. Trigger a yield here.
portYIELD_WITHIN_API();
}
}
}
}
xReturn = pdTRUE;
xExitLoop = pdTRUE;
goto loop_end;
} else if (xTicksToWait == (TickType_t) 0) {
//No block time. Return immediately.
xExitLoop = pdTRUE;
goto loop_end;
} else if (xEntryTimeSet == pdFALSE) {
//This is our first block. Set entry time
vTaskInternalSetTimeOutState(&xTimeOut);
xEntryTimeSet = pdTRUE;
}
if (xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) == pdFALSE) {
//Not timed out yet. Block the current task
vTaskPlaceOnEventList(&pxRingbuffer->xTasksWaitingToSend, xTicksToWait);
portYIELD_WITHIN_API();
} else {
//We have timed out
xExitLoop = pdTRUE;
}
loop_end:
portEXIT_CRITICAL(&pxRingbuffer->mux);
}
//Defer notifying the queue set until we are outside the loop and critical section.
if (xNotifyQueueSet == pdTRUE) {
xQueueSend((QueueHandle_t)pxRingbuffer->xQueueSet, (QueueSetMemberHandle_t *)&pxRingbuffer, 0);
}
return xReturn;
}
static BaseType_t prvReceiveGeneric(Ringbuffer_t *pxRingbuffer,
void **pvItem1,
void **pvItem2,
size_t *xItemSize1,
size_t *xItemSize2,
size_t xMaxSize,
TickType_t xTicksToWait)
{
BaseType_t xReturn = pdFALSE;
BaseType_t xExitLoop = pdFALSE;
BaseType_t xEntryTimeSet = pdFALSE;
TimeOut_t xTimeOut;
#ifdef __clang_analyzer__
// Teach clang-tidy that if NULL pointers are provided, this function will never dereference them
if (!pvItem1 || !pvItem2 || !xItemSize1 || !xItemSize2) {
return pdFALSE;
}
#endif /*__clang_analyzer__ */
while (xExitLoop == pdFALSE) {
portENTER_CRITICAL(&pxRingbuffer->mux);
if (prvCheckItemAvail(pxRingbuffer) == pdTRUE) {
//Item/data is available for retrieval
BaseType_t xIsSplit = pdFALSE;
if (pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG) {
//Read up to xMaxSize bytes from byte buffer
*pvItem1 = pxRingbuffer->pvGetItem(pxRingbuffer, NULL, xMaxSize, xItemSize1);
} else {
//Get (first) item from no-split/allow-split buffers
*pvItem1 = pxRingbuffer->pvGetItem(pxRingbuffer, &xIsSplit, 0, xItemSize1);
}
//If split buffer, check for split items
if (pxRingbuffer->uxRingbufferFlags & rbALLOW_SPLIT_FLAG) {
if (xIsSplit == pdTRUE) {
*pvItem2 = pxRingbuffer->pvGetItem(pxRingbuffer, &xIsSplit, 0, xItemSize2);
configASSERT(*pvItem2 < *pvItem1); //Check wrap around has occurred
configASSERT(xIsSplit == pdFALSE); //Second part should not have wrapped flag
} else {
*pvItem2 = NULL;
}
}
xReturn = pdTRUE;
xExitLoop = pdTRUE;
goto loop_end;
} else if (xTicksToWait == (TickType_t) 0) {
//No block time. Return immediately.
xExitLoop = pdTRUE;
goto loop_end;
} else if (xEntryTimeSet == pdFALSE) {
//This is our first block. Set entry time
vTaskInternalSetTimeOutState(&xTimeOut);
xEntryTimeSet = pdTRUE;
}
if (xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) == pdFALSE) {
//Not timed out yet. Block the current task
vTaskPlaceOnEventList(&pxRingbuffer->xTasksWaitingToReceive, xTicksToWait);
portYIELD_WITHIN_API();
} else {
//We have timed out.
xExitLoop = pdTRUE;
}
loop_end:
portEXIT_CRITICAL(&pxRingbuffer->mux);
}
return xReturn;
}
static BaseType_t prvReceiveGenericFromISR(Ringbuffer_t *pxRingbuffer,
void **pvItem1,
void **pvItem2,
size_t *xItemSize1,
size_t *xItemSize2,
size_t xMaxSize)
{
BaseType_t xReturn = pdFALSE;
#ifdef __clang_analyzer__
// Teach clang-tidy that if NULL pointers are provided, this function will never dereference them
if (!pvItem1 || !pvItem2 || !xItemSize1 || !xItemSize2) {
return pdFALSE;
}
#endif /*__clang_analyzer__ */
portENTER_CRITICAL_ISR(&pxRingbuffer->mux);
if (prvCheckItemAvail(pxRingbuffer) == pdTRUE) {
BaseType_t xIsSplit = pdFALSE;
if (pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG) {
//Read up to xMaxSize bytes from byte buffer
*pvItem1 = pxRingbuffer->pvGetItem(pxRingbuffer, NULL, xMaxSize, xItemSize1);
} else {
//Get (first) item from no-split/allow-split buffers
*pvItem1 = pxRingbuffer->pvGetItem(pxRingbuffer, &xIsSplit, 0, xItemSize1);
}
//If split buffer, check for split items
if (pxRingbuffer->uxRingbufferFlags & rbALLOW_SPLIT_FLAG) {
if (xIsSplit == pdTRUE) {
*pvItem2 = pxRingbuffer->pvGetItem(pxRingbuffer, &xIsSplit, 0, xItemSize2);
configASSERT(*pvItem2 < *pvItem1); //Check wrap around has occurred
configASSERT(xIsSplit == pdFALSE); //Second part should not have wrapped flag
} else {
*pvItem2 = NULL;
}
}
xReturn = pdTRUE;
} else {
xReturn = pdFALSE;
}
portEXIT_CRITICAL_ISR(&pxRingbuffer->mux);
return xReturn;
}
// ------------------------------------------------ Public Functions ---------------------------------------------------
RingbufHandle_t xRingbufferCreate(size_t xBufferSize, RingbufferType_t xBufferType)
{
configASSERT(xBufferSize > 0);
configASSERT(xBufferType < RINGBUF_TYPE_MAX);
//Allocate memory
if (xBufferType != RINGBUF_TYPE_BYTEBUF) {
xBufferSize = rbALIGN_SIZE(xBufferSize); //xBufferSize is rounded up for no-split/allow-split buffers
}
Ringbuffer_t *pxNewRingbuffer = calloc(1, sizeof(Ringbuffer_t));
uint8_t *pucRingbufferStorage = malloc(xBufferSize);
if (pxNewRingbuffer == NULL || pucRingbufferStorage == NULL) {
goto err;
}
prvInitializeNewRingbuffer(xBufferSize, xBufferType, pxNewRingbuffer, pucRingbufferStorage);
return (RingbufHandle_t)pxNewRingbuffer;
err:
//An error has occurred, Free memory and return NULL
free(pxNewRingbuffer);
free(pucRingbufferStorage);
return NULL;
}
RingbufHandle_t xRingbufferCreateNoSplit(size_t xItemSize, size_t xItemNum)
{
return xRingbufferCreate((rbALIGN_SIZE(xItemSize) + rbHEADER_SIZE) * xItemNum, RINGBUF_TYPE_NOSPLIT);
}
RingbufHandle_t xRingbufferCreateStatic(size_t xBufferSize,
RingbufferType_t xBufferType,
uint8_t *pucRingbufferStorage,
StaticRingbuffer_t *pxStaticRingbuffer)
{
//Check arguments
configASSERT(xBufferSize > 0);
configASSERT(xBufferType < RINGBUF_TYPE_MAX);
configASSERT(pucRingbufferStorage != NULL && pxStaticRingbuffer != NULL);
if (xBufferType != RINGBUF_TYPE_BYTEBUF) {
//No-split/allow-split buffer sizes must be 32-bit aligned
configASSERT(rbCHECK_ALIGNED(xBufferSize));
}
Ringbuffer_t *pxNewRingbuffer = (Ringbuffer_t *)pxStaticRingbuffer;
prvInitializeNewRingbuffer(xBufferSize, xBufferType, pxNewRingbuffer, pucRingbufferStorage);
pxNewRingbuffer->uxRingbufferFlags |= rbBUFFER_STATIC_FLAG;
return (RingbufHandle_t)pxNewRingbuffer;
}
BaseType_t xRingbufferSendAcquire(RingbufHandle_t xRingbuffer, void **ppvItem, size_t xItemSize, TickType_t xTicksToWait)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer);
configASSERT(ppvItem != NULL);
configASSERT((pxRingbuffer->uxRingbufferFlags & (rbBYTE_BUFFER_FLAG | rbALLOW_SPLIT_FLAG)) == 0); //Send acquire currently only supported in NoSplit buffers
*ppvItem = NULL;
if (xItemSize > pxRingbuffer->xMaxItemSize) {
return pdFALSE; //Data will never ever fit in the queue.
}
if ((pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG) && xItemSize == 0) {
return pdTRUE; //Sending 0 bytes to byte buffer has no effect
}
return prvSendAcquireGeneric(pxRingbuffer, NULL, ppvItem, xItemSize, xTicksToWait);
}
BaseType_t xRingbufferSendComplete(RingbufHandle_t xRingbuffer, void *pvItem)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
BaseType_t xNotifyQueueSet = pdFALSE;
//Check arguments
configASSERT(pxRingbuffer);
configASSERT(pvItem != NULL);
configASSERT((pxRingbuffer->uxRingbufferFlags & (rbBYTE_BUFFER_FLAG | rbALLOW_SPLIT_FLAG)) == 0);
portENTER_CRITICAL(&pxRingbuffer->mux);
prvSendItemDoneNoSplit(pxRingbuffer, pvItem);
if (pxRingbuffer->xQueueSet) {
//If ring buffer was added to a queue set, notify the queue set
xNotifyQueueSet = pdTRUE;
} else {
//If a task was waiting for data to arrive on the ring buffer, unblock it immediately.
if (listLIST_IS_EMPTY(&pxRingbuffer->xTasksWaitingToReceive) == pdFALSE) {
if (xTaskRemoveFromEventList(&pxRingbuffer->xTasksWaitingToReceive) == pdTRUE) {
//The unblocked task will preempt us. Trigger a yield here.
portYIELD_WITHIN_API();
}
}
}
portEXIT_CRITICAL(&pxRingbuffer->mux);
if (xNotifyQueueSet == pdTRUE) {
xQueueSend((QueueHandle_t)pxRingbuffer->xQueueSet, (QueueSetMemberHandle_t *)&pxRingbuffer, 0);
}
return pdTRUE;
}
BaseType_t xRingbufferSend(RingbufHandle_t xRingbuffer,
const void *pvItem,
size_t xItemSize,
TickType_t xTicksToWait)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer);
configASSERT(pvItem != NULL || xItemSize == 0);
if (xItemSize > pxRingbuffer->xMaxItemSize) {
return pdFALSE; //Data will never ever fit in the queue.
}
if ((pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG) && xItemSize == 0) {
return pdTRUE; //Sending 0 bytes to byte buffer has no effect
}
return prvSendAcquireGeneric(pxRingbuffer, pvItem, NULL, xItemSize, xTicksToWait);
}
BaseType_t xRingbufferSendFromISR(RingbufHandle_t xRingbuffer,
const void *pvItem,
size_t xItemSize,
BaseType_t *pxHigherPriorityTaskWoken)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
BaseType_t xNotifyQueueSet = pdFALSE;
BaseType_t xReturn;
//Check arguments
configASSERT(pxRingbuffer);
configASSERT(pvItem != NULL || xItemSize == 0);
if (xItemSize > pxRingbuffer->xMaxItemSize) {
return pdFALSE; //Data will never ever fit in the queue.
}
if ((pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG) && xItemSize == 0) {
return pdTRUE; //Sending 0 bytes to byte buffer has no effect
}
portENTER_CRITICAL_ISR(&pxRingbuffer->mux);
if (pxRingbuffer->xCheckItemFits(xRingbuffer, xItemSize) == pdTRUE) {
pxRingbuffer->vCopyItem(xRingbuffer, pvItem, xItemSize);
if (pxRingbuffer->xQueueSet) {
//If ring buffer was added to a queue set, notify the queue set
xNotifyQueueSet = pdTRUE;
} else {
//If a task was waiting for data to arrive on the ring buffer, unblock it immediately.
if (listLIST_IS_EMPTY(&pxRingbuffer->xTasksWaitingToReceive) == pdFALSE) {
if (xTaskRemoveFromEventList(&pxRingbuffer->xTasksWaitingToReceive) == pdTRUE) {
//The unblocked task will preempt us. Record that a context switch is required.
if (pxHigherPriorityTaskWoken != NULL) {
*pxHigherPriorityTaskWoken = pdTRUE;
}
}
}
}
xReturn = pdTRUE;
} else {
xReturn = pdFALSE;
}
portEXIT_CRITICAL_ISR(&pxRingbuffer->mux);
//Defer notifying the queue set until we are outside the critical section.
if (xNotifyQueueSet == pdTRUE) {
xQueueSendFromISR((QueueHandle_t)pxRingbuffer->xQueueSet, (QueueSetMemberHandle_t *)&pxRingbuffer, pxHigherPriorityTaskWoken);
}
return xReturn;
}
void *xRingbufferReceive(RingbufHandle_t xRingbuffer, size_t *pxItemSize, TickType_t xTicksToWait)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer && pxItemSize);
//Attempt to retrieve an item
void *pvTempItem;
if (prvReceiveGeneric(pxRingbuffer, &pvTempItem, NULL, pxItemSize, NULL, 0, xTicksToWait) == pdTRUE) {
return pvTempItem;
} else {
return NULL;
}
}
void *xRingbufferReceiveFromISR(RingbufHandle_t xRingbuffer, size_t *pxItemSize)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer && pxItemSize);
//Attempt to retrieve an item
void *pvTempItem;
if (prvReceiveGenericFromISR(pxRingbuffer, &pvTempItem, NULL, pxItemSize, NULL, 0) == pdTRUE) {
return pvTempItem;
} else {
return NULL;
}
}
BaseType_t xRingbufferReceiveSplit(RingbufHandle_t xRingbuffer,
void **ppvHeadItem,
void **ppvTailItem,
size_t *pxHeadItemSize,
size_t *pxTailItemSize,
TickType_t xTicksToWait)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer && ppvHeadItem && ppvTailItem && pxHeadItemSize && pxTailItemSize);
configASSERT(pxRingbuffer->uxRingbufferFlags & rbALLOW_SPLIT_FLAG);
return prvReceiveGeneric(pxRingbuffer, ppvHeadItem, ppvTailItem, pxHeadItemSize, pxTailItemSize, 0, xTicksToWait);
}
BaseType_t xRingbufferReceiveSplitFromISR(RingbufHandle_t xRingbuffer,
void **ppvHeadItem,
void **ppvTailItem,
size_t *pxHeadItemSize,
size_t *pxTailItemSize)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer && ppvHeadItem && ppvTailItem && pxHeadItemSize && pxTailItemSize);
configASSERT(pxRingbuffer->uxRingbufferFlags & rbALLOW_SPLIT_FLAG);
return prvReceiveGenericFromISR(pxRingbuffer, ppvHeadItem, ppvTailItem, pxHeadItemSize, pxTailItemSize, 0);
}
void *xRingbufferReceiveUpTo(RingbufHandle_t xRingbuffer,
size_t *pxItemSize,
TickType_t xTicksToWait,
size_t xMaxSize)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer && pxItemSize);
configASSERT(pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG); //This function should only be called for byte buffers
if (xMaxSize == 0) {
return NULL;
}
//Attempt to retrieve up to xMaxSize bytes
void *pvTempItem;
if (prvReceiveGeneric(pxRingbuffer, &pvTempItem, NULL, pxItemSize, NULL, xMaxSize, xTicksToWait) == pdTRUE) {
return pvTempItem;
} else {
return NULL;
}
}
void *xRingbufferReceiveUpToFromISR(RingbufHandle_t xRingbuffer, size_t *pxItemSize, size_t xMaxSize)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
//Check arguments
configASSERT(pxRingbuffer && pxItemSize);
configASSERT(pxRingbuffer->uxRingbufferFlags & rbBYTE_BUFFER_FLAG); //This function should only be called for byte buffers
if (xMaxSize == 0) {
return NULL;
}
//Attempt to retrieve up to xMaxSize bytes
void *pvTempItem;
if (prvReceiveGenericFromISR(pxRingbuffer, &pvTempItem, NULL, pxItemSize, NULL, xMaxSize) == pdTRUE) {
return pvTempItem;
} else {
return NULL;
}
}
void vRingbufferReturnItem(RingbufHandle_t xRingbuffer, void *pvItem)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
configASSERT(pvItem != NULL);
portENTER_CRITICAL(&pxRingbuffer->mux);
pxRingbuffer->vReturnItem(pxRingbuffer, (uint8_t *)pvItem);
//If a task was waiting for space to send, unblock it immediately.
if (listLIST_IS_EMPTY(&pxRingbuffer->xTasksWaitingToSend) == pdFALSE) {
if (xTaskRemoveFromEventList(&pxRingbuffer->xTasksWaitingToSend) == pdTRUE) {
//The unblocked task will preempt us. Trigger a yield here.
portYIELD_WITHIN_API();
}
}
portEXIT_CRITICAL(&pxRingbuffer->mux);
}
void vRingbufferReturnItemFromISR(RingbufHandle_t xRingbuffer, void *pvItem, BaseType_t *pxHigherPriorityTaskWoken)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
configASSERT(pvItem != NULL);
portENTER_CRITICAL_ISR(&pxRingbuffer->mux);
pxRingbuffer->vReturnItem(pxRingbuffer, (uint8_t *)pvItem);
//If a task was waiting for space to send, unblock it immediately.
if (listLIST_IS_EMPTY(&pxRingbuffer->xTasksWaitingToSend) == pdFALSE) {
if (xTaskRemoveFromEventList(&pxRingbuffer->xTasksWaitingToSend) == pdTRUE) {
//The unblocked task will preempt us. Record that a context switch is required.
if (pxHigherPriorityTaskWoken != NULL) {
*pxHigherPriorityTaskWoken = pdTRUE;
}
}
}
portEXIT_CRITICAL_ISR(&pxRingbuffer->mux);
}
void vRingbufferDelete(RingbufHandle_t xRingbuffer)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
//Ring buffer was not statically allocated. Free its memory.
if ( !( pxRingbuffer->uxRingbufferFlags & rbBUFFER_STATIC_FLAG ) ) {
free(pxRingbuffer->pucHead);
free(pxRingbuffer);
}
}
size_t xRingbufferGetMaxItemSize(RingbufHandle_t xRingbuffer)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
return pxRingbuffer->xMaxItemSize;
}
size_t xRingbufferGetCurFreeSize(RingbufHandle_t xRingbuffer)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
size_t xFreeSize;
portENTER_CRITICAL(&pxRingbuffer->mux);
xFreeSize = pxRingbuffer->xGetCurMaxSize(pxRingbuffer);
portEXIT_CRITICAL(&pxRingbuffer->mux);
return xFreeSize;
}
BaseType_t xRingbufferAddToQueueSetRead(RingbufHandle_t xRingbuffer, QueueSetHandle_t xQueueSet)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
BaseType_t xReturn;
configASSERT(pxRingbuffer && xQueueSet);
portENTER_CRITICAL(&pxRingbuffer->mux);
if (pxRingbuffer->xQueueSet != NULL || prvCheckItemAvail(pxRingbuffer) == pdTRUE) {
/*
- Cannot add ring buffer to more than one queue set
- It is dangerous to add a ring buffer to a queue set if the ring buffer currently has data to be read.
*/
xReturn = pdFALSE;
} else {
//Add ring buffer to queue set
pxRingbuffer->xQueueSet = xQueueSet;
xReturn = pdTRUE;
}
portEXIT_CRITICAL(&pxRingbuffer->mux);
return xReturn;
}
BaseType_t xRingbufferRemoveFromQueueSetRead(RingbufHandle_t xRingbuffer, QueueSetHandle_t xQueueSet)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
BaseType_t xReturn;
configASSERT(pxRingbuffer && xQueueSet);
portENTER_CRITICAL(&pxRingbuffer->mux);
if (pxRingbuffer->xQueueSet != xQueueSet || prvCheckItemAvail(pxRingbuffer) == pdTRUE) {
/*
- Ring buffer was never added to this queue set
- It is dangerous to remove a ring buffer from a queue set if the ring buffer currently has data to be read.
*/
xReturn = pdFALSE;
} else {
//Remove ring buffer from queue set
pxRingbuffer->xQueueSet = NULL;
xReturn = pdTRUE;
}
portEXIT_CRITICAL(&pxRingbuffer->mux);
return xReturn;
}
void vRingbufferGetInfo(RingbufHandle_t xRingbuffer,
UBaseType_t *uxFree,
UBaseType_t *uxRead,
UBaseType_t *uxWrite,
UBaseType_t *uxAcquire,
UBaseType_t *uxItemsWaiting)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
portENTER_CRITICAL(&pxRingbuffer->mux);
if (uxFree != NULL) {
*uxFree = (UBaseType_t)(pxRingbuffer->pucFree - pxRingbuffer->pucHead);
}
if (uxRead != NULL) {
*uxRead = (UBaseType_t)(pxRingbuffer->pucRead - pxRingbuffer->pucHead);
}
if (uxWrite != NULL) {
*uxWrite = (UBaseType_t)(pxRingbuffer->pucWrite - pxRingbuffer->pucHead);
}
if (uxAcquire != NULL) {
*uxAcquire = (UBaseType_t)(pxRingbuffer->pucAcquire - pxRingbuffer->pucHead);
}
if (uxItemsWaiting != NULL) {
*uxItemsWaiting = (UBaseType_t)(pxRingbuffer->xItemsWaiting);
}
portEXIT_CRITICAL(&pxRingbuffer->mux);
}
void xRingbufferPrintInfo(RingbufHandle_t xRingbuffer)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
configASSERT(pxRingbuffer);
printf("Rb size:%" PRId32 "\tfree: %" PRId32 "\trptr: %" PRId32 "\tfreeptr: %" PRId32 "\twptr: %" PRId32 ", aptr: %" PRId32 "\n",
(int32_t)pxRingbuffer->xSize, (int32_t)prvGetFreeSize(pxRingbuffer),
(int32_t)(pxRingbuffer->pucRead - pxRingbuffer->pucHead),
(int32_t)(pxRingbuffer->pucFree - pxRingbuffer->pucHead),
(int32_t)(pxRingbuffer->pucWrite - pxRingbuffer->pucHead),
(int32_t)(pxRingbuffer->pucAcquire - pxRingbuffer->pucHead));
}
BaseType_t xRingbufferGetStaticBuffer(RingbufHandle_t xRingbuffer, uint8_t **ppucRingbufferStorage, StaticRingbuffer_t **ppxStaticRingbuffer)
{
Ringbuffer_t *pxRingbuffer = (Ringbuffer_t *)xRingbuffer;
BaseType_t xReturn;
configASSERT(pxRingbuffer && ppucRingbufferStorage && ppxStaticRingbuffer);
if (pxRingbuffer->uxRingbufferFlags & rbBUFFER_STATIC_FLAG) {
*ppucRingbufferStorage = pxRingbuffer->pucHead;
*ppxStaticRingbuffer = (StaticRingbuffer_t *)pxRingbuffer;
xReturn = pdTRUE;
} else {
xReturn = pdFALSE;
}
return xReturn;
}
RingbufHandle_t xRingbufferCreateWithCaps(size_t xBufferSize, RingbufferType_t xBufferType, UBaseType_t uxMemoryCaps)
{
RingbufHandle_t xRingbuffer;
StaticRingbuffer_t *pxStaticRingbuffer;
uint8_t *pucRingbufferStorage;
pxStaticRingbuffer = heap_caps_malloc(sizeof(StaticRingbuffer_t), (uint32_t)uxMemoryCaps);
pucRingbufferStorage = heap_caps_malloc(xBufferSize, (uint32_t)uxMemoryCaps);
if (pxStaticRingbuffer == NULL || pucRingbufferStorage == NULL) {
goto err;
}
// Create the ring buffer using static creation API
xRingbuffer = xRingbufferCreateStatic(xBufferSize, xBufferType, pucRingbufferStorage, pxStaticRingbuffer);
if (xRingbuffer == NULL) {
goto err;
}
return xRingbuffer;
err:
heap_caps_free(pxStaticRingbuffer);
heap_caps_free(pucRingbufferStorage);
return NULL;
}
void vRingbufferDeleteWithCaps(RingbufHandle_t xRingbuffer)
{
BaseType_t xResult;
StaticRingbuffer_t *pxStaticRingbuffer = NULL;
uint8_t *pucRingbufferStorage = NULL;
// Retrieve the buffers used to create the ring buffer before deleting it
xResult = xRingbufferGetStaticBuffer(xRingbuffer, &pucRingbufferStorage, &pxStaticRingbuffer);
configASSERT(xResult == pdTRUE);
// Delete the ring buffer
vRingbufferDelete(xRingbuffer);
// Free the memory buffers
heap_caps_free(pxStaticRingbuffer);
heap_caps_free(pucRingbufferStorage);
}