kopia lustrzana https://github.com/espressif/esp-idf
311 wiersze
9.8 KiB
C
311 wiersze
9.8 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include "unity.h"
|
|
#include "esp_pm.h"
|
|
#include "esp_clk.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "esp_log.h"
|
|
#include "driver/timer.h"
|
|
#include "driver/rtc_io.h"
|
|
#include "esp32/ulp.h"
|
|
#include "soc/rtc_io_reg.h"
|
|
#include "soc/rtc_cntl_reg.h"
|
|
#include "soc/rtc_gpio_channel.h"
|
|
|
|
TEST_CASE("Can dump power management lock stats", "[pm]")
|
|
{
|
|
esp_pm_dump_locks(stdout);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_ENABLE
|
|
|
|
static void switch_freq(int mhz)
|
|
{
|
|
rtc_cpu_freq_t max_freq;
|
|
assert(rtc_clk_cpu_freq_from_mhz(mhz, &max_freq));
|
|
esp_pm_config_esp32_t pm_config = {
|
|
.max_cpu_freq = max_freq,
|
|
.min_cpu_freq = RTC_CPU_FREQ_XTAL,
|
|
};
|
|
ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
|
|
printf("Waiting for frequency to be set to %d (%d MHz)...\n", max_freq, mhz);
|
|
while (esp_clk_cpu_freq() / 1000000 != mhz) {
|
|
vTaskDelay(pdMS_TO_TICKS(1000));
|
|
printf("Frequency is %d MHz\n", esp_clk_cpu_freq());
|
|
}
|
|
printf("Frequency is set to %d MHz\n", mhz);
|
|
}
|
|
|
|
TEST_CASE("Can switch frequency using esp_pm_configure", "[pm]")
|
|
{
|
|
int orig_freq_mhz = esp_clk_cpu_freq() / 1000000;
|
|
switch_freq(240);
|
|
switch_freq(40);
|
|
switch_freq(160);
|
|
switch_freq(240);
|
|
switch_freq(80);
|
|
switch_freq(40);
|
|
switch_freq(240);
|
|
switch_freq(40);
|
|
switch_freq(80);
|
|
switch_freq(orig_freq_mhz);
|
|
}
|
|
|
|
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
|
|
|
|
static void light_sleep_enable()
|
|
{
|
|
const esp_pm_config_esp32_t pm_config = {
|
|
.max_cpu_freq = rtc_clk_cpu_freq_get(),
|
|
.min_cpu_freq = RTC_CPU_FREQ_XTAL,
|
|
.light_sleep_enable = true
|
|
};
|
|
ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
|
|
}
|
|
|
|
static void light_sleep_disable()
|
|
{
|
|
const esp_pm_config_esp32_t pm_config = {
|
|
.max_cpu_freq = rtc_clk_cpu_freq_get(),
|
|
.min_cpu_freq = rtc_clk_cpu_freq_get(),
|
|
};
|
|
ESP_ERROR_CHECK( esp_pm_configure(&pm_config) );
|
|
}
|
|
|
|
TEST_CASE("Automatic light occurs when tasks are suspended", "[pm]")
|
|
{
|
|
/* To figure out if light sleep takes place, use Timer Group timer.
|
|
* It will stop working while in light sleep.
|
|
*/
|
|
timer_config_t config = {
|
|
.counter_dir = TIMER_COUNT_UP,
|
|
.divider = 80 /* 1 us per tick */
|
|
};
|
|
timer_init(TIMER_GROUP_0, TIMER_0, &config);
|
|
timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0);
|
|
timer_start(TIMER_GROUP_0, TIMER_0);
|
|
|
|
light_sleep_enable();
|
|
|
|
for (int ticks_to_delay = CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP;
|
|
ticks_to_delay < CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP * 10;
|
|
++ticks_to_delay) {
|
|
|
|
/* Wait until next tick */
|
|
vTaskDelay(1);
|
|
|
|
/* The following delay should cause light sleep to start */
|
|
uint64_t count_start;
|
|
timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_start);
|
|
vTaskDelay(ticks_to_delay);
|
|
uint64_t count_end;
|
|
timer_get_counter_value(TIMER_GROUP_0, TIMER_0, &count_end);
|
|
|
|
|
|
int timer_diff_us = (int) (count_end - count_start);
|
|
const int us_per_tick = 1 * portTICK_PERIOD_MS * 1000;
|
|
|
|
printf("%d %d\n", ticks_to_delay * us_per_tick, timer_diff_us);
|
|
TEST_ASSERT(timer_diff_us < ticks_to_delay * us_per_tick);
|
|
}
|
|
|
|
light_sleep_disable();
|
|
}
|
|
|
|
|
|
TEST_CASE("Can wake up from automatic light sleep by GPIO", "[pm]")
|
|
{
|
|
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 16 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
|
|
|
|
/* Set up GPIO used to wake up RTC */
|
|
const int ext1_wakeup_gpio = 25;
|
|
const int ext_rtc_io = RTCIO_GPIO25_CHANNEL;
|
|
TEST_ESP_OK(rtc_gpio_init(ext1_wakeup_gpio));
|
|
rtc_gpio_set_direction(ext1_wakeup_gpio, RTC_GPIO_MODE_INPUT_OUTPUT);
|
|
rtc_gpio_set_level(ext1_wakeup_gpio, 0);
|
|
|
|
/* Enable wakeup */
|
|
TEST_ESP_OK(esp_sleep_enable_ext1_wakeup(1ULL << ext1_wakeup_gpio, ESP_EXT1_WAKEUP_ANY_HIGH));
|
|
|
|
/* To simplify test environment, we'll use a ULP program to set GPIO high */
|
|
ulp_insn_t ulp_code[] = {
|
|
I_DELAY(65535), /* about 8ms, given 8MHz ULP clock */
|
|
I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 0),
|
|
I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 1),
|
|
I_DELAY(1000),
|
|
I_WR_REG_BIT(RTC_GPIO_OUT_REG, ext_rtc_io + RTC_GPIO_OUT_DATA_S, 0),
|
|
I_WR_REG_BIT(RTC_CNTL_HOLD_FORCE_REG, RTC_CNTL_PDAC1_HOLD_FORCE_S, 1),
|
|
I_END(),
|
|
I_HALT()
|
|
};
|
|
TEST_ESP_OK(ulp_set_wakeup_period(0, 1000 /* us */));
|
|
size_t size = sizeof(ulp_code)/sizeof(ulp_insn_t);
|
|
TEST_ESP_OK(ulp_process_macros_and_load(0, ulp_code, &size));
|
|
|
|
light_sleep_enable();
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
/* Set GPIO low */
|
|
REG_CLR_BIT(rtc_gpio_desc[ext1_wakeup_gpio].reg, rtc_gpio_desc[ext1_wakeup_gpio].hold_force);
|
|
rtc_gpio_set_level(ext1_wakeup_gpio, 0);
|
|
REG_SET_BIT(rtc_gpio_desc[ext1_wakeup_gpio].reg, rtc_gpio_desc[ext1_wakeup_gpio].hold_force);
|
|
|
|
/* Wait for the next tick */
|
|
vTaskDelay(1);
|
|
|
|
/* Start ULP program */
|
|
ulp_run(0);
|
|
|
|
const int delay_ms = 200;
|
|
const int delay_ticks = delay_ms / portTICK_PERIOD_MS;
|
|
|
|
int64_t start_rtc = esp_clk_rtc_time();
|
|
int64_t start_hs = esp_timer_get_time();
|
|
uint32_t start_tick = xTaskGetTickCount();
|
|
/* Will enter sleep here */
|
|
vTaskDelay(delay_ticks);
|
|
int64_t end_rtc = esp_clk_rtc_time();
|
|
int64_t end_hs = esp_timer_get_time();
|
|
uint32_t end_tick = xTaskGetTickCount();
|
|
|
|
printf("%lld %lld %u\n", end_rtc - start_rtc, end_hs - start_hs, end_tick - start_tick);
|
|
|
|
TEST_ASSERT_INT32_WITHIN(3, delay_ticks, end_tick - start_tick);
|
|
TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_hs - start_hs);
|
|
TEST_ASSERT_INT32_WITHIN(2 * portTICK_PERIOD_MS * 1000, delay_ms * 1000, end_rtc - start_rtc);
|
|
}
|
|
REG_CLR_BIT(rtc_gpio_desc[ext1_wakeup_gpio].reg, rtc_gpio_desc[ext1_wakeup_gpio].hold_force);
|
|
rtc_gpio_deinit(ext1_wakeup_gpio);
|
|
|
|
light_sleep_disable();
|
|
}
|
|
|
|
|
|
typedef struct {
|
|
int delay_us;
|
|
int result;
|
|
SemaphoreHandle_t done;
|
|
} delay_test_arg_t;
|
|
|
|
static void test_delay_task(void* p)
|
|
{
|
|
delay_test_arg_t* arg = (delay_test_arg_t*) p;
|
|
vTaskDelay(1);
|
|
|
|
uint64_t start = esp_clk_rtc_time();
|
|
vTaskDelay(arg->delay_us / portTICK_PERIOD_MS / 1000);
|
|
uint64_t stop = esp_clk_rtc_time();
|
|
|
|
arg->result = (int) (stop - start);
|
|
xSemaphoreGive(arg->done);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
TEST_CASE("vTaskDelay duration is correct with light sleep enabled", "[pm]")
|
|
{
|
|
light_sleep_enable();
|
|
|
|
delay_test_arg_t args = {
|
|
.done = xSemaphoreCreateBinary()
|
|
};
|
|
|
|
const int delays[] = { 10, 20, 50, 100, 150, 200, 250 };
|
|
const int delays_count = sizeof(delays) / sizeof(delays[0]);
|
|
|
|
for (int i = 0; i < delays_count; ++i) {
|
|
int delay_ms = delays[i];
|
|
args.delay_us = delay_ms * 1000;
|
|
|
|
xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 0);
|
|
TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) );
|
|
printf("CPU0: %d %d\n", args.delay_us, args.result);
|
|
TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
|
|
|
|
#if portNUM_PROCESSORS == 2
|
|
xTaskCreatePinnedToCore(test_delay_task, "", 2048, (void*) &args, 3, NULL, 1);
|
|
TEST_ASSERT( xSemaphoreTake(args.done, delay_ms * 10 / portTICK_PERIOD_MS) );
|
|
printf("CPU1: %d %d\n", args.delay_us, args.result);
|
|
TEST_ASSERT_INT32_WITHIN(1000 * portTICK_PERIOD_MS * 2, args.delay_us, args.result);
|
|
#endif
|
|
}
|
|
vSemaphoreDelete(args.done);
|
|
|
|
light_sleep_disable();
|
|
}
|
|
|
|
/* This test is similar to the one in test_esp_timer.c, but since we can't use
|
|
* ref_clock, this test uses RTC clock for timing. Also enables automatic
|
|
* light sleep.
|
|
*/
|
|
TEST_CASE("esp_timer produces correct delays with light sleep", "[pm]")
|
|
{
|
|
// no, we can't make this a const size_t (§6.7.5.2)
|
|
#define NUM_INTERVALS 16
|
|
|
|
typedef struct {
|
|
esp_timer_handle_t timer;
|
|
size_t cur_interval;
|
|
int intervals[NUM_INTERVALS];
|
|
int64_t t_start;
|
|
SemaphoreHandle_t done;
|
|
} test_args_t;
|
|
|
|
void timer_func(void* arg)
|
|
{
|
|
test_args_t* p_args = (test_args_t*) arg;
|
|
int64_t t_end = esp_clk_rtc_time();
|
|
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
|
|
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
|
|
p_args->intervals[p_args->cur_interval++] = ms_diff;
|
|
// Deliberately make timer handler run longer.
|
|
// We check that this doesn't affect the result.
|
|
ets_delay_us(10*1000);
|
|
if (p_args->cur_interval == NUM_INTERVALS) {
|
|
printf("done\n");
|
|
TEST_ESP_OK(esp_timer_stop(p_args->timer));
|
|
xSemaphoreGive(p_args->done);
|
|
}
|
|
}
|
|
|
|
light_sleep_enable();
|
|
|
|
const int delay_ms = 100;
|
|
test_args_t args = {0};
|
|
esp_timer_handle_t timer1;
|
|
esp_timer_create_args_t create_args = {
|
|
.callback = &timer_func,
|
|
.arg = &args,
|
|
.name = "timer1",
|
|
};
|
|
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
|
|
|
|
args.timer = timer1;
|
|
args.t_start = esp_clk_rtc_time();
|
|
args.done = xSemaphoreCreateBinary();
|
|
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
|
|
|
|
TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
|
|
|
|
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
|
|
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
|
|
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
|
|
}
|
|
|
|
TEST_ESP_OK( esp_timer_dump(stdout) );
|
|
|
|
TEST_ESP_OK( esp_timer_delete(timer1) );
|
|
vSemaphoreDelete(args.done);
|
|
|
|
light_sleep_disable();
|
|
|
|
#undef NUM_INTERVALS
|
|
}
|
|
|
|
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
|
|
|
|
#endif // CONFIG_PM_ENABLE
|