esp-idf/examples/peripherals/lcd/i80_controller
morris bc372f8f55 rgb_lcd: deprecate esp_lcd_color_space_t 2022-08-16 14:35:08 +08:00
..
main rgb_lcd: deprecate esp_lcd_color_space_t 2022-08-16 14:35:08 +08:00
CMakeLists.txt tools: Increase the minimal supported CMake version to 3.16 2022-06-01 06:35:02 +00:00
README.md examples/lcd: Add touch support into i80 lcd example. 2022-08-02 08:11:13 +02:00
sdkconfig.defaults examples/lcd: Add touch support into i80 lcd example. 2022-08-02 08:11:13 +02:00
sdkconfig.defaults.esp32s3 kconfig: move remaining kconfig options out of target component 2022-05-23 17:57:45 +08:00

README.md

Supported Targets ESP32 ESP32-S2 ESP32-S3

LVGL porting example (based on i80 interfaced LCD controller)

LVGL is an open-source graphics library for creating modern GUIs. It has plenty of built-in graphical elements with low memory footprint, which is friendly for embedded GUI applications.

This example can be taken as a skeleton of porting the LVGL library onto the esp_lcd driver layer. Note that, this example only focuses on the display interface, regardless of the input device driver.

The whole porting code is located in i80_controller_example_main.c, and the UI demo code is located in lvgl_demo_ui.c.

The UI will display two images (one Espressif logo and another Espressif text), which have been converted into C arrays by the online converting tool, and will be compiled directly into application binary.

This example is constructed by IDF component manager, all the external dependency will be handled by the CMake build system automatically. In this case, it will help download the lvgl from registry, with the version specified in the manifest file.

This example uses the esp_timer to generate the ticks needed by LVGL. For more porting guides, please refer to LVGL porting doc.

How to use the example

Hardware Required

  • An ESP development board
  • An Intel 8080 interfaced (so called MCU interface or parallel interface) LCD (this example can use ST7789, NT35510 or ILI9341)
  • An USB cable for power supply and programming

Hardware Connection

The connection between ESP Board and the LCD is as follows:

   ESP Board                      LCD Screen
┌─────────────┐              ┌────────────────┐
│             │              │                │
│         3V3 ├─────────────►│ VCC            │
│             │              │                │
│         GND ├──────────────┤ GND            │
│             │              │                │
│  DATA[0..7] │◄────────────►│ DATA[0..7]     │
│             │              │                │
│        PCLK ├─────────────►│ PCLK           │
│             │              │                │
│          CS ├─────────────►│ CS             │
│             │              │                │
│         D/C ├─────────────►│ D/C            │
│             │              │                │
│         RST ├─────────────►│ RST            │
│             │              │                │
│    BK_LIGHT ├─────────────►│ BCKL           │
│             │              │                │
│             │              └────────────────┘
│             │                   LCD TOUCH
│             │              ┌────────────────┐
│             │              │                │
│     I2C SCL ├─────────────►│ I2C SCL        │
│             │              │                │
│     I2C SDA │◄────────────►│ I2C SDA        │
│             │              │                │
└─────────────┘              └────────────────┘

The GPIO number used by this example can be changed in i80_controller_example_main.c. Especially, please pay attention to the binary signal level used to turn the LCD backlight on, some LCD modules need a low level to turn it on, while others require a high level. You can change the backlight level macro EXAMPLE_LCD_BK_LIGHT_ON_LEVEL in i80_controller_example_main.c.

Build and Flash

Run idf.py set-target <target-name> to select one supported target that can run this example. This step will also apply the default Kconfig configurations into the sdkconfig file.

Run idf.py menuconfig to open a terminal UI where you can tune specific configuration for this example in the Example Configuration menu.

  • i80 LCD controller model: Choose the LCD model to use by the example. If you choose NT35510, there will be another relevant configuration NT35510 Data Width, to choose the data line width for your NT35510 LCD module.

  • Allocate color data from PSRAM: Select this option if you want to allocate the LVGL draw buffers from PSRAM.

Run idf.py -p PORT build flash monitor to build, flash and monitor the project. A fancy animation will show up on the LCD as expected.

The first time you run idf.py for the example will cost extra time as the build system needs to address the component dependencies and downloads the missing components from registry into managed_components folder.

(To exit the serial monitor, type Ctrl-].)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

Example Output

I (0) cpu_start: Starting scheduler on APP CPU.
I (418) example: Turn off LCD backlight
I (418) gpio: GPIO[2]| InputEn: 0| OutputEn: 1| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (428) example: Initialize Intel 8080 bus
I (438) example: Install LCD driver of st7789
I (558) example: Turn on LCD backlight
I (558) example: Initialize LVGL library
I (558) example: Register display driver to LVGL
I (558) example: Install LVGL tick timer
I (558) example: Display LVGL animation

Touch Screen Support

This example supports touch screen connected via I2C. You can enable it by running idf.py menuconfig and navigating to Example Configuration -> Enable LCD touch. When touch is enabled, there will be a new button in the GUI that can restart the animation.

These touch controllers are supported:

Troubleshooting

  • Can't get a stable UI when EXAMPLE_LCD_I80_COLOR_IN_PSRAM is enabled.

    This is because of the limited PSRAM bandwidth, compared to the internal SRAM. You can either decrease the PCLK clock EXAMPLE_LCD_PIXEL_CLOCK_HZ in i80_controller_example_main.c or increase the PSRAM working frequency SPIRAM_SPEED from the KConfig (e.g. ESP32S3-Specific -> Set RAM clock speed) or decrease the FPS in LVGL configuration. For illustration, this example has set the refresh period to 100ms in the default sdkconfig file.

For any technical queries, please open an [issue] (https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you soon.