esp-idf/components/sdmmc/sdmmc_cmd.c

792 wiersze
25 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <inttypes.h>
#include "esp_timer.h"
#include "sdmmc_common.h"
static const char* TAG = "sdmmc_cmd";
esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
{
if (card->host.command_timeout_ms != 0) {
cmd->timeout_ms = card->host.command_timeout_ms;
} else if (cmd->timeout_ms == 0) {
cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
}
int slot = card->host.slot;
ESP_LOGV(TAG, "sending cmd slot=%d op=%" PRIu32 " arg=%" PRIx32 " flags=%x data=%p blklen=%" PRIu32 " datalen=%" PRIu32 " timeout=%" PRIu32,
slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, (uint32_t) cmd->blklen, (uint32_t) cmd->datalen, cmd->timeout_ms);
esp_err_t err = (*card->host.do_transaction)(slot, cmd);
if (err != 0) {
ESP_LOGD(TAG, "cmd=%" PRIu32 ", sdmmc_req_run returned 0x%x", cmd->opcode, err);
return err;
}
int state = MMC_R1_CURRENT_STATE(cmd->response);
ESP_LOGV(TAG, "cmd response %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " err=0x%x state=%d",
cmd->response[0],
cmd->response[1],
cmd->response[2],
cmd->response[3],
cmd->error,
state);
return cmd->error;
}
esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
{
sdmmc_command_t app_cmd = {
.opcode = MMC_APP_CMD,
.flags = SCF_CMD_AC | SCF_RSP_R1,
.arg = MMC_ARG_RCA(card->rca),
};
esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
if (err != ESP_OK) {
return err;
}
// Check APP_CMD status bit (only in SD mode)
if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
ESP_LOGW(TAG, "card doesn't support APP_CMD");
return ESP_ERR_NOT_SUPPORTED;
}
return sdmmc_send_cmd(card, cmd);
}
esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
{
sdmmc_command_t cmd = {
.opcode = MMC_GO_IDLE_STATE,
.flags = SCF_CMD_BC | SCF_RSP_R0,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (host_is_spi(card)) {
/* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
* SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
* so don't expect the above command to succeed.
* SCF_RSP_R1 flag below tells the lower layer to expect correct R1
* response (in SPI mode).
*/
(void) err;
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
cmd.flags |= SCF_RSP_R1;
err = sdmmc_send_cmd(card, &cmd);
}
if (err == ESP_OK) {
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
}
return err;
}
esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
{
const uint8_t pattern = 0xaa; /* any pattern will do here */
sdmmc_command_t cmd = {
.opcode = SD_SEND_IF_COND,
.arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
.flags = SCF_CMD_BCR | SCF_RSP_R7,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
uint8_t response = cmd.response[0] & 0xff;
if (response != pattern) {
ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
return ESP_ERR_INVALID_RESPONSE;
}
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
{
esp_err_t err;
/* If the host supports this, keep card clock enabled
* from the start of ACMD41 until the card is idle.
* (Ref. SD spec, section 4.4 "Clock control".)
*/
if (card->host.set_cclk_always_on != NULL) {
err = card->host.set_cclk_always_on(card->host.slot, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_cclk_always_on (1) err=0x%x", __func__, err);
return err;
}
ESP_LOGV(TAG, "%s: keeping clock on during ACMD41", __func__);
}
sdmmc_command_t cmd = {
.arg = ocr,
.flags = SCF_CMD_BCR | SCF_RSP_R3,
.opcode = SD_APP_OP_COND
};
int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
for (; nretries != 0; --nretries) {
bzero(&cmd, sizeof cmd);
cmd.arg = ocr;
cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
if (!card->is_mmc) { /* SD mode */
cmd.opcode = SD_APP_OP_COND;
err = sdmmc_send_app_cmd(card, &cmd);
} else { /* MMC mode */
cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
cmd.arg |= MMC_OCR_SECTOR_MODE;
cmd.opcode = MMC_SEND_OP_COND;
err = sdmmc_send_cmd(card, &cmd);
}
if (err != ESP_OK) {
if (--err_cnt == 0) {
ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
goto done;
} else {
ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
continue;
}
}
// In SD protocol, card sets MEM_READY bit in OCR when it is ready.
// In SPI protocol, card clears IDLE_STATE bit in R1 response.
if (!host_is_spi(card)) {
if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
ocr == 0) {
break;
}
} else {
if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
break;
}
}
vTaskDelay(10 / portTICK_PERIOD_MS);
}
if (nretries == 0) {
err = ESP_ERR_TIMEOUT;
goto done;
}
if (ocrp) {
*ocrp = MMC_R3(cmd.response);
}
err = ESP_OK;
done:
if (card->host.set_cclk_always_on != NULL) {
esp_err_t err_cclk_dis = card->host.set_cclk_always_on(card->host.slot, false);
if (err_cclk_dis != ESP_OK) {
ESP_LOGE(TAG, "%s: set_cclk_always_on (2) err=0x%x", __func__, err);
/* If we failed to disable clock, don't overwrite 'err' to return the original error */
}
ESP_LOGV(TAG, "%s: clock always-on mode disabled", __func__);
}
return err;
}
esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
{
assert(ocrp);
sdmmc_command_t cmd = {
.opcode = SD_READ_OCR,
.flags = SCF_CMD_BCR | SCF_RSP_R2
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
*ocrp = SD_SPI_R3(cmd.response);
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
{
assert(out_raw_cid);
sdmmc_command_t cmd = {
.opcode = MMC_ALL_SEND_CID,
.flags = SCF_CMD_BCR | SCF_RSP_R2
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
{
assert(out_cid);
assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
sdmmc_response_t buf;
sdmmc_command_t cmd = {
.opcode = MMC_SEND_CID,
.flags = SCF_CMD_READ | SCF_CMD_ADTC,
.arg = 0,
.data = &buf[0],
.datalen = sizeof(buf)
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
sdmmc_flip_byte_order(buf, sizeof(buf));
return sdmmc_decode_cid(buf, out_cid);
}
esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
{
assert(out_rca);
sdmmc_command_t cmd = {
.opcode = SD_SEND_RELATIVE_ADDR,
.flags = SCF_CMD_BCR | SCF_RSP_R6
};
/* MMC cards expect us to set the RCA.
* Set RCA to 1 since we don't support multiple cards on the same bus, for now.
*/
uint16_t mmc_rca = 1;
if (card->is_mmc) {
cmd.arg = MMC_ARG_RCA(mmc_rca);
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
*out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
{
sdmmc_command_t cmd = {
.opcode = MMC_SET_BLOCKLEN,
.arg = csd->sector_size,
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
{
/* The trick with SEND_CSD is that in SPI mode, it acts as a data read
* command, while in SD mode it is an AC command with R2 response.
*/
sdmmc_response_t spi_buf;
const bool is_spi = host_is_spi(card);
sdmmc_command_t cmd = {
.opcode = MMC_SEND_CSD,
.arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
.flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
(SCF_CMD_AC | SCF_RSP_R2),
.data = is_spi ? &spi_buf[0] : 0,
.datalen = is_spi ? sizeof(spi_buf) : 0,
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
uint32_t* ptr = cmd.response;
if (is_spi) {
sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
ptr = spi_buf;
}
if (card->is_mmc) {
err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
} else {
err = sdmmc_decode_csd(ptr, out_csd);
}
return err;
}
esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
{
/* Don't expect to see a response when de-selecting a card */
uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
sdmmc_command_t cmd = {
.opcode = MMC_SELECT_CARD,
.arg = MMC_ARG_RCA(rca),
.flags = SCF_CMD_AC | response
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
{
size_t datalen = 8;
esp_err_t err = ESP_FAIL;
void *buf = NULL;
size_t actual_size = 0;
esp_dma_mem_info_t dma_mem_info;
card->host.get_dma_info(card->host.slot, &dma_mem_info);
err = esp_dma_capable_malloc(datalen, &dma_mem_info, &buf, &actual_size);
if (err != ESP_OK) {
return err;
}
sdmmc_command_t cmd = {
.data = buf,
.datalen = datalen,
.buflen = actual_size,
.blklen = datalen,
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.opcode = SD_APP_SEND_SCR
};
err = sdmmc_send_app_cmd(card, &cmd);
if (err == ESP_OK) {
err = sdmmc_decode_scr(buf, out_scr);
}
free(buf);
return err;
}
esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
{
sdmmc_command_t cmd = {
.opcode = SD_APP_SET_BUS_WIDTH,
.flags = SCF_RSP_R1 | SCF_CMD_AC,
.arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
};
return sdmmc_send_app_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
{
assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
sdmmc_command_t cmd = {
.opcode = SD_CRC_ON_OFF,
.arg = crc_enable ? 1 : 0,
.flags = SCF_CMD_AC | SCF_RSP_R1
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
{
sdmmc_command_t cmd = {
.opcode = MMC_SEND_STATUS,
.arg = MMC_ARG_RCA(card->rca),
.flags = SCF_CMD_AC | SCF_RSP_R1
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
return err;
}
if (out_status) {
if (host_is_spi(card)) {
*out_status = SD_SPI_R2(cmd.response);
} else {
*out_status = MMC_R1(cmd.response);
}
}
return ESP_OK;
}
esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
size_t start_block, size_t block_count)
{
if (block_count == 0) {
return ESP_OK;
}
esp_err_t err = ESP_OK;
size_t block_size = card->csd.sector_size;
esp_dma_mem_info_t dma_mem_info;
card->host.get_dma_info(card->host.slot, &dma_mem_info);
#ifdef SOC_SDMMC_PSRAM_DMA_CAPABLE
dma_mem_info.extra_heap_caps |= MALLOC_CAP_SPIRAM;
#endif
if (esp_dma_is_buffer_alignment_satisfied(src, block_size * block_count, dma_mem_info)) {
err = sdmmc_write_sectors_dma(card, src, start_block, block_count, block_size * block_count);
} else {
// SDMMC peripheral needs DMA-capable buffers. Split the write into
// separate single block writes, if needed, and allocate a temporary
// DMA-capable buffer.
void *tmp_buf = NULL;
size_t actual_size = 0;
// Clear the SPIRAM flag. We don't want to force the allocation into SPIRAM, the allocator
// will decide based on the buffer size and memory availability.
dma_mem_info.extra_heap_caps &= ~MALLOC_CAP_SPIRAM;
err = esp_dma_capable_malloc(block_size, &dma_mem_info, &tmp_buf, &actual_size);
if (err != ESP_OK) {
return err;
}
const uint8_t* cur_src = (const uint8_t*) src;
for (size_t i = 0; i < block_count; ++i) {
memcpy(tmp_buf, cur_src, block_size);
cur_src += block_size;
err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
__func__, err, start_block, i);
break;
}
}
free(tmp_buf);
}
return err;
}
esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
size_t start_block, size_t block_count, size_t buffer_len)
{
if (start_block + block_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
size_t block_size = card->csd.sector_size;
sdmmc_command_t cmd = {
.flags = SCF_CMD_ADTC | SCF_RSP_R1,
.blklen = block_size,
.data = (void*) src,
.datalen = block_count * block_size,
.buflen = buffer_len,
.timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
};
if (block_count == 1) {
cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
} else {
cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
}
if (card->ocr & SD_OCR_SDHC_CAP) {
cmd.arg = start_block;
} else {
cmd.arg = start_block * block_size;
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
uint32_t status = 0;
size_t count = 0;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
/* SD mode: wait for the card to become idle based on R1 status */
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
ESP_LOGE(TAG, "write sectors dma - timeout");
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (++count % 16 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", (uint32_t) count);
}
}
/* SPI mode: although card busy indication is based on the busy token,
* SD spec recommends that the host checks the results of programming by sending
* SEND_STATUS command. Some of the conditions reported in SEND_STATUS are not
* reported via a data error token.
*/
if (host_is_spi(card)) {
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (status & SD_SPI_R2_CARD_LOCKED) {
ESP_LOGE(TAG, "%s: write failed, card is locked: r2=0x%04" PRIx32,
__func__, status);
return ESP_ERR_INVALID_STATE;
}
if (status != 0) {
ESP_LOGE(TAG, "%s: card status indicates an error after write operation: r2=0x%04" PRIx32,
__func__, status);
return ESP_ERR_INVALID_RESPONSE;
}
}
return ESP_OK;
}
esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
size_t start_block, size_t block_count)
{
if (block_count == 0) {
return ESP_OK;
}
esp_err_t err = ESP_OK;
size_t block_size = card->csd.sector_size;
esp_dma_mem_info_t dma_mem_info;
card->host.get_dma_info(card->host.slot, &dma_mem_info);
if (esp_dma_is_buffer_alignment_satisfied(dst, block_size * block_count, dma_mem_info)) {
err = sdmmc_read_sectors_dma(card, dst, start_block, block_count, block_size * block_count);
} else {
// SDMMC peripheral needs DMA-capable buffers. Split the read into
// separate single block reads, if needed, and allocate a temporary
// DMA-capable buffer.
void *tmp_buf = NULL;
size_t actual_size = 0;
err = esp_dma_capable_malloc(block_size, &dma_mem_info, &tmp_buf, &actual_size);
if (err != ESP_OK) {
return err;
}
uint8_t* cur_dst = (uint8_t*) dst;
for (size_t i = 0; i < block_count; ++i) {
err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
__func__, err, start_block, i);
break;
}
memcpy(cur_dst, tmp_buf, block_size);
cur_dst += block_size;
}
free(tmp_buf);
}
return err;
}
esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
size_t start_block, size_t block_count, size_t buffer_len)
{
if (start_block + block_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
size_t block_size = card->csd.sector_size;
sdmmc_command_t cmd = {
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.blklen = block_size,
.data = (void*) dst,
.datalen = block_count * block_size,
.buflen = buffer_len,
};
if (block_count == 1) {
cmd.opcode = MMC_READ_BLOCK_SINGLE;
} else {
cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
}
if (card->ocr & SD_OCR_SDHC_CAP) {
cmd.arg = start_block;
} else {
cmd.arg = start_block * block_size;
}
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
uint32_t status = 0;
size_t count = 0;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
/* SD mode: wait for the card to become idle based on R1 status */
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
ESP_LOGE(TAG, "read sectors dma - timeout");
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (++count % 16 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
}
}
return ESP_OK;
}
esp_err_t sdmmc_erase_sectors(sdmmc_card_t* card, size_t start_sector,
size_t sector_count, sdmmc_erase_arg_t arg)
{
if (sector_count == 0) {
return ESP_OK;
}
if (start_sector + sector_count > card->csd.capacity) {
return ESP_ERR_INVALID_SIZE;
}
uint32_t cmd38_arg;
if (arg == SDMMC_ERASE_ARG) {
cmd38_arg = card->is_mmc ? SDMMC_MMC_TRIM_ARG : SDMMC_SD_ERASE_ARG;
} else {
cmd38_arg = card->is_mmc ? SDMMC_MMC_DISCARD_ARG : SDMMC_SD_DISCARD_ARG;
}
/* validate the CMD38 argument against card supported features */
if (card->is_mmc) {
if ((cmd38_arg == SDMMC_MMC_TRIM_ARG) && (sdmmc_can_trim(card) != ESP_OK)) {
return ESP_ERR_NOT_SUPPORTED;
}
if ((cmd38_arg == SDMMC_MMC_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
return ESP_ERR_NOT_SUPPORTED;
}
} else { // SD card
if ((cmd38_arg == SDMMC_SD_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
return ESP_ERR_NOT_SUPPORTED;
}
}
/* default as block unit address */
size_t addr_unit_mult = 1;
if (!(card->ocr & SD_OCR_SDHC_CAP)) {
addr_unit_mult = card->csd.sector_size;
}
/* prepare command to set the start address */
sdmmc_command_t cmd = {
.flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_WAIT_BUSY,
.opcode = card->is_mmc ? MMC_ERASE_GROUP_START :
SD_ERASE_GROUP_START,
.arg = (start_sector * addr_unit_mult),
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_START) returned 0x%x", __func__, err);
return err;
}
/* prepare command to set the end address */
cmd.opcode = card->is_mmc ? MMC_ERASE_GROUP_END : SD_ERASE_GROUP_END;
cmd.arg = ((start_sector + (sector_count - 1)) * addr_unit_mult);
err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_END) returned 0x%x", __func__, err);
return err;
}
/* issue erase command */
memset((void *)&cmd, 0 , sizeof(sdmmc_command_t));
cmd.flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_WAIT_BUSY;
cmd.opcode = MMC_ERASE;
cmd.arg = cmd38_arg;
cmd.timeout_ms = sdmmc_get_erase_timeout_ms(card, cmd38_arg, sector_count * card->csd.sector_size / 1024);
err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE) returned 0x%x", __func__, err);
return err;
}
if (host_is_spi(card)) {
uint32_t status;
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
return err;
}
if (status != 0) {
ESP_LOGE(TAG, "%s: card status indicates an error after erase operation: r2=0x%04" PRIx32,
__func__, status);
return ESP_ERR_INVALID_RESPONSE;
}
}
return ESP_OK;
}
esp_err_t sdmmc_can_discard(sdmmc_card_t* card)
{
if ((card->is_mmc) && (card->ext_csd.rev >= EXT_CSD_REV_1_6)) {
return ESP_OK;
}
// SD card
if ((!card->is_mmc) && !host_is_spi(card) && (card->ssr.discard_support == 1)) {
return ESP_OK;
}
return ESP_FAIL;
}
esp_err_t sdmmc_can_trim(sdmmc_card_t* card)
{
if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_GB_CL_EN)) {
return ESP_OK;
}
return ESP_FAIL;
}
esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t* card)
{
if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_SANITIZE)) {
return ESP_OK;
}
return ESP_FAIL;
}
esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t* card, uint32_t timeout_ms)
{
esp_err_t err;
uint8_t index = EXT_CSD_SANITIZE_START;
uint8_t set = EXT_CSD_CMD_SET_NORMAL;
uint8_t value = 0x01;
if (sdmmc_mmc_can_sanitize(card) != ESP_OK) {
return ESP_ERR_NOT_SUPPORTED;
}
/*
* A Sanitize operation is initiated by writing a value to the extended
* CSD[165] SANITIZE_START. While the device is performing the sanitize
* operation, the busy line is asserted.
* SWITCH command is used to write the EXT_CSD register.
*/
sdmmc_command_t cmd = {
.opcode = MMC_SWITCH,
.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set,
.flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY,
.timeout_ms = timeout_ms,
};
err = sdmmc_send_cmd(card, &cmd);
if (err == ESP_OK) {
//check response bit to see that switch was accepted
if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) {
err = ESP_ERR_INVALID_RESPONSE;
}
}
return err;
}
esp_err_t sdmmc_full_erase(sdmmc_card_t* card)
{
sdmmc_erase_arg_t arg = SDMMC_SD_ERASE_ARG; // erase by default for SD card
esp_err_t err;
if (card->is_mmc) {
arg = sdmmc_mmc_can_sanitize(card) == ESP_OK ? SDMMC_MMC_DISCARD_ARG: SDMMC_MMC_TRIM_ARG;
}
err = sdmmc_erase_sectors(card, 0, card->csd.capacity, arg);
if ((err == ESP_OK) && (arg == SDMMC_MMC_DISCARD_ARG)) {
uint32_t timeout_ms = sdmmc_get_erase_timeout_ms(card, SDMMC_MMC_DISCARD_ARG, card->csd.capacity * ((uint64_t) card->csd.sector_size) / 1024);
return sdmmc_mmc_sanitize(card, timeout_ms);
}
return err;
}
esp_err_t sdmmc_get_status(sdmmc_card_t* card)
{
uint32_t stat;
return sdmmc_send_cmd_send_status(card, &stat);
}