esp-idf/components/esp32s2/Kconfig

525 wiersze
22 KiB
Plaintext

menu "ESP32S2-specific"
# TODO: this component simply shouldn't be included
# in the build at the CMake level, but this is currently
# not working so we just hide all items here
visible if IDF_TARGET_ESP32S2
choice ESP32S2_DEFAULT_CPU_FREQ_MHZ
prompt "CPU frequency"
default ESP32S2_DEFAULT_CPU_FREQ_160 if !IDF_ENV_FPGA
default ESP32S2_DEFAULT_CPU_FREQ_FPGA if IDF_ENV_FPGA
help
CPU frequency to be set on application startup.
config ESP32S2_DEFAULT_CPU_FREQ_FPGA
depends on IDF_ENV_FPGA
bool "FPGA"
config ESP32S2_DEFAULT_CPU_FREQ_80
bool "80 MHz"
config ESP32S2_DEFAULT_CPU_FREQ_160
bool "160 MHz"
config ESP32S2_DEFAULT_CPU_FREQ_240
bool "240 MHz"
endchoice
config ESP32S2_DEFAULT_CPU_FREQ_MHZ
int
default 40 if IDF_ENV_FPGA
default 80 if ESP32S2_DEFAULT_CPU_FREQ_80
default 160 if ESP32S2_DEFAULT_CPU_FREQ_160
default 240 if ESP32S2_DEFAULT_CPU_FREQ_240
menu "Memory protection"
config ESP32S2_MEMPROT_FEATURE
bool "Enable memory protection"
default "y"
help
If enabled, permission control module watches all memory access and fires panic handler
if permission violation is detected. This feature automatically splits
memory into data and instruction segments and sets Read/Execute permissions
for instruction part (below splitting address) and Read/Write permissions
for data part (above splitting address). The memory protection is effective
on all access through IRAM0 and DRAM0 buses.
config ESP32S2_MEMPROT_FEATURE_LOCK
depends on ESP32S2_MEMPROT_FEATURE
bool "Lock memory protection settings"
default "y"
help
Once locked, memory protection settings cannot be changed anymore.
The lock is reset only on the chip startup.
endmenu # Memory protection
menu "Cache config"
choice ESP32S2_INSTRUCTION_CACHE_SIZE
prompt "Instruction cache size"
default ESP32S2_INSTRUCTION_CACHE_8KB
help
Instruction cache size to be set on application startup.
If you use 8KB instruction cache rather than 16KB instruction cache,
then the other 8KB will be added to the heap.
config ESP32S2_INSTRUCTION_CACHE_8KB
bool "8KB"
config ESP32S2_INSTRUCTION_CACHE_16KB
bool "16KB"
endchoice
choice ESP32S2_INSTRUCTION_CACHE_LINE_SIZE
prompt "Instruction cache line size"
default ESP32S2_INSTRUCTION_CACHE_LINE_32B
help
Instruction cache line size to be set on application startup.
config ESP32S2_INSTRUCTION_CACHE_LINE_16B
bool "16 Bytes"
config ESP32S2_INSTRUCTION_CACHE_LINE_32B
bool "32 Bytes"
endchoice
choice ESP32S2_DATA_CACHE_SIZE
prompt "Data cache size"
default ESP32S2_DATA_CACHE_0KB if !ESP32S2_SPIRAM_SUPPORT
default ESP32S2_DATA_CACHE_8KB if ESP32S2_SPIRAM_SUPPORT
help
Data cache size to be set on application startup.
If you use 0KB data cache, the other 16KB will be added to the heap
If you use 8KB data cache rather than 16KB data cache, the other 8KB will be added to the heap
config ESP32S2_DATA_CACHE_0KB
depends on !ESP32S2_SPIRAM_SUPPORT
bool "0KB"
config ESP32S2_DATA_CACHE_8KB
bool "8KB"
config ESP32S2_DATA_CACHE_16KB
bool "16KB"
endchoice
choice ESP32S2_DATA_CACHE_LINE_SIZE
prompt "Data cache line size"
default ESP32S2_DATA_CACHE_LINE_32B
help
Data cache line size to be set on application startup.
config ESP32S2_DATA_CACHE_LINE_16B
bool "16 Bytes"
config ESP32S2_DATA_CACHE_LINE_32B
bool "32 Bytes"
endchoice
config ESP32S2_INSTRUCTION_CACHE_WRAP
bool "Enable instruction cache wrap"
default "n"
help
If enabled, instruction cache will use wrap mode to read spi flash (maybe spiram).
The wrap length equals to INSTRUCTION_CACHE_LINE_SIZE.
However, it depends on complex conditions.
config ESP32S2_DATA_CACHE_WRAP
bool "Enable data cache wrap"
default "n"
help
If enabled, data cache will use wrap mode to read spiram (maybe spi flash).
The wrap length equals to DATA_CACHE_LINE_SIZE.
However, it depends on complex conditions.
endmenu # Cache config
# Note: to support SPIRAM across multiple chips, check CONFIG_SPIRAM
# instead
config ESP32S2_SPIRAM_SUPPORT
bool "Support for external, SPI-connected RAM"
default "n"
select SPIRAM
help
This enables support for an external SPI RAM chip, connected in parallel with the
main SPI flash chip.
menu "SPI RAM config"
depends on ESP32S2_SPIRAM_SUPPORT
choice SPIRAM_TYPE
prompt "Type of SPI RAM chip in use"
default SPIRAM_TYPE_AUTO
config SPIRAM_TYPE_AUTO
bool "Auto-detect"
config SPIRAM_TYPE_ESPPSRAM16
bool "ESP-PSRAM16 or APS1604"
config SPIRAM_TYPE_ESPPSRAM32
bool "ESP-PSRAM32 or IS25WP032"
config SPIRAM_TYPE_ESPPSRAM64
bool "ESP-PSRAM64 or LY68L6400"
endchoice
config SPIRAM_SIZE
int
default -1 if SPIRAM_TYPE_AUTO
default 2097152 if SPIRAM_TYPE_ESPPSRAM16
default 4194304 if SPIRAM_TYPE_ESPPSRAM32
default 8388608 if SPIRAM_TYPE_ESPPSRAM64
default 0
menu "PSRAM clock and cs IO for ESP32S2"
depends on ESP32S2_SPIRAM_SUPPORT
config DEFAULT_PSRAM_CLK_IO
int "PSRAM CLK IO number"
range 0 33
default 30
help
The PSRAM CLOCK IO can be any unused GPIO, user can config it based on hardware design.
config DEFAULT_PSRAM_CS_IO
int "PSRAM CS IO number"
range 0 33
default 26
help
The PSRAM CS IO can be any unused GPIO, user can config it based on hardware design.
endmenu
config SPIRAM_FETCH_INSTRUCTIONS
bool "Cache fetch instructions from SPI RAM"
default n
help
If enabled, instruction in flash will be copied into SPIRAM.
If SPIRAM_RODATA also enabled,
you can run the instruction when erasing or programming the flash.
config SPIRAM_RODATA
bool "Cache load read only data from SPI RAM"
default n
help
If enabled, radata in flash will be copied into SPIRAM.
If SPIRAM_FETCH_INSTRUCTIONS also enabled,
you can run the instruction when erasing or programming the flash.
choice SPIRAM_SPEED
prompt "Set RAM clock speed"
default SPIRAM_SPEED_40M
help
Select the speed for the SPI RAM chip.
config SPIRAM_SPEED_80M
bool "80MHz clock speed"
config SPIRAM_SPEED_40M
bool "40Mhz clock speed"
config SPIRAM_SPEED_26M
bool "26Mhz clock speed"
config SPIRAM_SPEED_20M
bool "20Mhz clock speed"
endchoice
# insert non-chip-specific items here
source "$IDF_PATH/components/esp_common/Kconfig.spiram.common"
endmenu
config ESP32S2_MEMMAP_TRACEMEM
bool
default "n"
config ESP32S2_MEMMAP_TRACEMEM_TWOBANKS
bool
default "n"
config ESP32S2_TRAX
bool "Use TRAX tracing feature"
default "n"
select ESP32S2_MEMMAP_TRACEMEM
help
The ESP32S2 contains a feature which allows you to trace the execution path the processor
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
of memory that can't be used for general purposes anymore. Disable this if you do not know
what this is.
config ESP32S2_TRACEMEM_RESERVE_DRAM
hex
default 0x8000 if ESP32S2_MEMMAP_TRACEMEM && ESP32S2_MEMMAP_TRACEMEM_TWOBANKS
default 0x4000 if ESP32S2_MEMMAP_TRACEMEM && !ESP32S2_MEMMAP_TRACEMEM_TWOBANKS
default 0x0
choice ESP32S2_UNIVERSAL_MAC_ADDRESSES
bool "Number of universally administered (by IEEE) MAC address"
default ESP32S2_UNIVERSAL_MAC_ADDRESSES_TWO
help
Configure the number of universally administered (by IEEE) MAC addresses.
During initialization, MAC addresses for each network interface are generated or derived from a
single base MAC address.
If the number of universal MAC addresses is Two, all interfaces (WiFi station, WiFi softap) receive a
universally administered MAC address. They are generated sequentially by adding 0, and 1 (respectively)
to the final octet of the base MAC address. If the number of universal MAC addresses is one,
only WiFi station receives a universally administered MAC address.
It's generated by adding 0 to the base MAC address.
The WiFi softap receives local MAC addresses. It's derived from the universal WiFi station MAC addresses.
When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
a custom universal MAC address range, the correct setting will depend on the allocation of MAC
addresses in this range (either 1 or 2 per device.)
config ESP32S2_UNIVERSAL_MAC_ADDRESSES_ONE
bool "One"
select ESP_MAC_ADDR_UNIVERSE_WIFI_STA
config ESP32S2_UNIVERSAL_MAC_ADDRESSES_TWO
bool "Two"
select ESP_MAC_ADDR_UNIVERSE_WIFI_STA
select ESP_MAC_ADDR_UNIVERSE_WIFI_AP
endchoice
config ESP32S2_UNIVERSAL_MAC_ADDRESSES
int
default 1 if ESP32S2_UNIVERSAL_MAC_ADDRESSES_ONE
default 2 if ESP32S2_UNIVERSAL_MAC_ADDRESSES_TWO
config ESP32S2_ULP_COPROC_ENABLED
bool "Enable Ultra Low Power (ULP) Coprocessor"
default "n"
help
Set to 'y' if you plan to load a firmware for the coprocessor.
If this option is enabled, further coprocessor configuration will appear in the Components menu.
config ESP32S2_ULP_COPROC_RESERVE_MEM
int
prompt "RTC slow memory reserved for coprocessor" if ESP32S2_ULP_COPROC_ENABLED
default 2048 if ESP32S2_ULP_COPROC_ENABLED
range 32 8192 if ESP32S2_ULP_COPROC_ENABLED
default 0 if !ESP32S2_ULP_COPROC_ENABLED
range 0 0 if !ESP32S2_ULP_COPROC_ENABLED
help
Bytes of memory to reserve for ULP coprocessor firmware & data.
Data is reserved at the beginning of RTC slow memory.
config ESP32S2_ULP_COPROC_RISCV
bool "Enable RISC-V as ULP coprocessor"
depends on ESP32S2_ULP_COPROC_ENABLED
default n
help
Set this to y to use the RISC-V coprocessor instead of the FSM-ULP.
config ESP32S2_DEBUG_OCDAWARE
bool "Make exception and panic handlers JTAG/OCD aware"
default y
select FREERTOS_DEBUG_OCDAWARE
help
The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and
instead of panicking, have the debugger stop on the offending instruction.
config ESP32S2_DEBUG_STUBS_ENABLE
bool "OpenOCD debug stubs"
default COMPILER_OPTIMIZATION_LEVEL_DEBUG
depends on !ESP32S2_TRAX
help
Debug stubs are used by OpenOCD to execute pre-compiled onboard code which does some useful debugging,
e.g. GCOV data dump.
config ESP32S2_BROWNOUT_DET
bool "Hardware brownout detect & reset"
default y
help
The ESP32-S2 has a built-in brownout detector which can detect if the voltage is lower than
a specific value. If this happens, it will reset the chip in order to prevent unintended
behaviour.
choice ESP32S2_BROWNOUT_DET_LVL_SEL
prompt "Brownout voltage level"
depends on ESP32S2_BROWNOUT_DET
default ESP32S2_BROWNOUT_DET_LVL_SEL_7
help
The brownout detector will reset the chip when the supply voltage is approximately
below this level. Note that there may be some variation of brownout voltage level
between each ESP3-S2 chip.
#The voltage levels here are estimates, more work needs to be done to figure out the exact voltages
#of the brownout threshold levels.
config ESP32S2_BROWNOUT_DET_LVL_SEL_7
bool "2.44V"
config ESP32S2_BROWNOUT_DET_LVL_SEL_6
bool "2.56V"
config ESP32S2_BROWNOUT_DET_LVL_SEL_5
bool "2.67V"
config ESP32S2_BROWNOUT_DET_LVL_SEL_4
bool "2.84V"
config ESP32S2_BROWNOUT_DET_LVL_SEL_3
bool "2.98V"
config ESP32S2_BROWNOUT_DET_LVL_SEL_2
bool "3.19V"
config ESP32S2_BROWNOUT_DET_LVL_SEL_1
bool "3.30V"
endchoice
config ESP32S2_BROWNOUT_DET_LVL
int
default 1 if ESP32S2_BROWNOUT_DET_LVL_SEL_1
default 2 if ESP32S2_BROWNOUT_DET_LVL_SEL_2
default 3 if ESP32S2_BROWNOUT_DET_LVL_SEL_3
default 4 if ESP32S2_BROWNOUT_DET_LVL_SEL_4
default 5 if ESP32S2_BROWNOUT_DET_LVL_SEL_5
default 6 if ESP32S2_BROWNOUT_DET_LVL_SEL_6
default 7 if ESP32S2_BROWNOUT_DET_LVL_SEL_7
# Note about the use of "FRC1" name: currently FRC1 timer is not used for
# high resolution timekeeping anymore. Instead the esp_timer API, implemented
# using FRC2 timer, is used.
# FRC1 name in the option name is kept for compatibility.
choice ESP32S2_TIME_SYSCALL
prompt "Timers used for gettimeofday function"
default ESP32S2_TIME_SYSCALL_USE_RTC_FRC1
help
This setting defines which hardware timers are used to
implement 'gettimeofday' and 'time' functions in C library.
- If both high-resolution and RTC timers are used, timekeeping will
continue in deep sleep. Time will be reported at 1 microsecond
resolution. This is the default, and the recommended option.
- If only high-resolution timer is used, gettimeofday will
provide time at microsecond resolution.
Time will not be preserved when going into deep sleep mode.
- If only RTC timer is used, timekeeping will continue in
deep sleep, but time will be measured at 6.(6) microsecond
resolution. Also the gettimeofday function itself may take
longer to run.
- If no timers are used, gettimeofday and time functions
return -1 and set errno to ENOSYS.
- When RTC is used for timekeeping, two RTC_STORE registers are
used to keep time in deep sleep mode.
config ESP32S2_TIME_SYSCALL_USE_RTC_FRC1
bool "RTC and high-resolution timer"
select ESP_TIME_FUNCS_USE_RTC_TIMER
select ESP_TIME_FUNCS_USE_ESP_TIMER
config ESP32S2_TIME_SYSCALL_USE_RTC
bool "RTC"
select ESP_TIME_FUNCS_USE_RTC_TIMER
config ESP32S2_TIME_SYSCALL_USE_FRC1
bool "High-resolution timer"
select ESP_TIME_FUNCS_USE_ESP_TIMER
config ESP32S2_TIME_SYSCALL_USE_NONE
bool "None"
select ESP_TIME_FUNCS_USE_NONE
endchoice
choice ESP32S2_RTC_CLK_SRC
prompt "RTC clock source"
default ESP32S2_RTC_CLK_SRC_INT_RC
help
Choose which clock is used as RTC clock source.
- "Internal 90kHz oscillator" option provides lowest deep sleep current
consumption, and does not require extra external components. However
frequency stability with respect to temperature is poor, so time may
drift in deep/light sleep modes.
- "External 32kHz crystal" provides better frequency stability, at the
expense of slightly higher (1uA) deep sleep current consumption.
- "External 32kHz oscillator" allows using 32kHz clock generated by an
external circuit. In this case, external clock signal must be connected
to 32K_XN pin. Amplitude should be <1.2V in case of sine wave signal,
and <1V in case of square wave signal. Common mode voltage should be
0.1 < Vcm < 0.5Vamp, where Vamp is the signal amplitude.
Additionally, 1nF capacitor must be connected between 32K_XP pin and
ground. 32K_XP pin can not be used as a GPIO in this case.
- "Internal 8MHz oscillator divided by 256" option results in higher
deep sleep current (by 5uA) but has better frequency stability than
the internal 90kHz oscillator. It does not require external components.
config ESP32S2_RTC_CLK_SRC_INT_RC
bool "Internal 90kHz RC oscillator"
config ESP32S2_RTC_CLK_SRC_EXT_CRYS
bool "External 32kHz crystal"
select ESP_SYSTEM_RTC_EXT_XTAL
config ESP32S2_RTC_CLK_SRC_EXT_OSC
bool "External 32kHz oscillator at 32K_XN pin"
config ESP32S2_RTC_CLK_SRC_INT_8MD256
bool "Internal 8MHz oscillator, divided by 256 (~32kHz)"
endchoice
config ESP32S2_RTC_CLK_CAL_CYCLES
int "Number of cycles for RTC_SLOW_CLK calibration"
default 3000 if ESP32S2_RTC_CLK_SRC_EXT_CRYS || ESP32S2_RTC_CLK_SRC_EXT_OSC || ESP32S2_RTC_CLK_SRC_INT_8MD256
default 576 if ESP32S2_RTC_CLK_SRC_INT_RC
range 0 125000
help
When the startup code initializes RTC_SLOW_CLK, it can perform
calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
frequency. This option sets the number of RTC_SLOW_CLK cycles measured
by the calibration routine. Higher numbers increase calibration
precision, which may be important for applications which spend a lot of
time in deep sleep. Lower numbers reduce startup time.
When this option is set to 0, clock calibration will not be performed at
startup, and approximate clock frequencies will be assumed:
- 90000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
- 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more.
In case more value will help improve the definition of the launch of the crystal.
If the crystal could not start, it will be switched to internal RC.
config ESP32S2_RTC_XTAL_CAL_RETRY
int "Number of attempts to repeat 32k XTAL calibration"
default 3
depends on ESP32S2_RTC_CLK_SRC_EXT_CRYS
help
Number of attempts to repeat 32k XTAL calibration
before giving up and switching to the internal RC.
Increase this option if the 32k crystal oscillator
does not start and switches to internal RC.
config ESP32S2_NO_BLOBS
bool "No Binary Blobs"
depends on !BT_ENABLED
default n
help
If enabled, this disables the linking of binary libraries in the application build. Note
that after enabling this Wi-Fi/Bluetooth will not work.
config ESP32S2_KEEP_USB_ALIVE
bool "Keep USB peripheral enabled at start up" if !ESP_CONSOLE_USB_CDC
default y if ESP_CONSOLE_USB_CDC
help
During the application initialization process, all the peripherals except UARTs and timers
are reset. Enable this option to keep USB peripheral enabled.
This option is automatically enabled if "USB CDC" console is selected.
config ESP32S2_RTCDATA_IN_FAST_MEM
bool "Place RTC_DATA_ATTR and RTC_RODATA_ATTR variables into RTC fast memory segment"
default n
help
This option allows to place .rtc_data and .rtc_rodata sections into
RTC fast memory segment to free the slow memory region for ULP programs.
config ESP32S2_USE_FIXED_STATIC_RAM_SIZE
bool "Use fixed static RAM size"
default n
help
If this option is disabled, the DRAM part of the heap starts right after the .bss section,
within the dram0_0 region. As a result, adding or removing some static variables
will change the available heap size.
If this option is enabled, the DRAM part of the heap starts right after the dram0_0 region,
where its length is set with ESP32S2_FIXED_STATIC_RAM_SIZE
config ESP32S2_FIXED_STATIC_RAM_SIZE
hex "Fixed Static RAM size"
default 0x10000
range 0 0x34000
depends on ESP32S2_USE_FIXED_STATIC_RAM_SIZE
help
RAM size dedicated for static variables (.data & .bss sections).
config ESP32S2_ALLOW_RTC_FAST_MEM_AS_HEAP
bool "Enable RTC fast memory for dynamic allocations"
default y
help
This config option allows to add RTC fast memory region to system heap with capability
similar to that of DRAM region but without DMA. This memory will be consumed first per
heap initialization order by early startup services and scheduler related code. Speed
wise RTC fast memory operates on APB clock and hence does not have much performance impact.
endmenu # ESP32S2-Specific