esp-idf/components/spi_flash/README_CN.rst

189 wiersze
11 KiB
ReStructuredText
Czysty Wina Historia

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

SPI Flash API
=================
:link_to_translation:`en:[English]`
概述
--------
SPI Flash 组件提供外部 flash 数据读取、写入、擦除和内存映射相关的 API 函数,同时也提供了更高层级的,面向分区的 API 函数(定义在 :doc:`分区表 </api-guides/partition-tables>` 中)。
与 ESP-IDF V4.0 之前的 API 不同,这一版 API 功能并不局限于主 SPI Flash 芯片(即运行程序的 SPI Flash 芯片)。使用不同的芯片指针,您可以通过 SPI0/1 或 HSPI/VSPI 总线访问外部 flash。
.. note::
ESP-IDF V4.0 之后的 flash API 不再是原子的。因此,如果 flash 操作地址有重叠,且写操作与读操作同时执行,读操作可能会返回一部分写入之前的数据,返回一部分写入之后的数据。
Kconfig 选项 :ref:`CONFIG_SPI_FLASH_USE_LEGACY_IMPL` 可将 ``spi_flash_*`` 函数切换至 ESP-IDF V4.0 之前的实现。但是,如果同时使用新旧 API代码量可能会增多。
即便未启用 :ref:`CONFIG_SPI_FLASH_USE_LEGACY_IMPL`,加密读取和加密写入操作也均使用旧实现。因此,仅有主 flash 芯片支持加密操作,其他不同片选(经 SPI1 访问的 flash 芯片)则不支持加密操作。
初始化 Flash 设备
---------------------------
在使用 ``esp_flash_*`` API 之前,您需要在 SPI 总线上初始化芯片。
1. 调用 :cpp:func:`spi_bus_initialize` 初始化 SPI 总线,此函数将初始化总线上设备间共享的资源,如 I/O、DMA 及中断等。
2. 调用 :cpp:func:`spi_bus_add_flash_device` 将 flash 设备连接到总线上。然后分配内存,填充 ``esp_flash_t`` 结构体,同时初始化 CS I/O。
3. 调用 :cpp:func:`esp_flash_init` 与芯片进行通信。后续操作会依据芯片类型不同而有差异。
.. note:: 目前,多个 flash 芯片可连接到同一总线。但尚不支持在同一个 SPI 总线上使用 ``esp_flash_*````spi_device_*`` 设备。
SPI Flash 访问 API
--------------------
如下所示为处理 flash 中数据的函数集:
- :cpp:func:`esp_flash_read`:将数据从 flash 读取到 RAM
- :cpp:func:`esp_flash_write`:将数据从 RAM 写入到 flash
- :cpp:func:`esp_flash_erase_region`:擦除 flash 中指定区域的数据;
- :cpp:func:`esp_flash_erase_chip`:擦除整个 flash
- :cpp:func:`esp_flash_get_chip_size`:返回 menuconfig 中设置的 flash 芯片容量(以字节为单位)。
一般来说,请尽量避免对主 SPI flash 芯片直接使用原始 SPI flash 函数,如需对主 SPI flash 芯片进行操作,请使用 :ref:`分区专用函数 <flash-partition-apis>`
SPI Flash 容量
--------------
SPI flash 容量存储于引导程序映像头部(烧录偏移量为 0x1000的一个字段。
默认情况下,引导程序写入 flash 时esptool.py 将引导程序写入 flash 时,会自动检测 SPI flash 容量,同时使用正确容量更新引导程序的头部。您也可以在工程配置中设置 :envvar:`CONFIG_ESPTOOLPY_FLASHSIZE`,生成固定的 flash 容量。
如需在运行时覆盖已配置的 flash 容量,请配置 ``g_rom_flashchip`` 结构中的 ``chip_size````esp_flash_*`` 函数使用此容量(于软件和 ROM 中)进行边界检查。
SPI1 Flash 并发约束
-----------------------------------------
由于 SPI1 flash 也被用于执行固件(通过指令 cache 或数据 cache ),因此在执行读取、写入及擦除操作时,必须禁用这些 cache。这意味着在执行 flash 写操作时,两个 CPU 必须从 IRAM 运行代码,且只能从 DRAM 中读取数据。
如果您使用本文档中 API 函数,上述限制将自动生效且透明(无需您额外关注),但这些限制可能会影响系统中的其他任务的性能。
除 SPI0/1 以外的 SPI 总线上的其它 flash 芯片则不受这种限制。
请参阅 :ref:`应用程序内存分布 <memory-layout>`,查看 IRAM、DRAM 和 flash cache 的区别。
为避免意外读取 flash cache一个 CPU 在启动 flash 写入或擦除操作时,另一个 CPU 将阻塞,并且在 flash 操作完成前,两个 CPU 上的所有的非 IRAM 安全的中断都会被禁用。
.. _iram-safe-interrupt-handlers:
IRAM 安全中断处理程序
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
如果您需要在 flash 操作期间运行中断处理程序(比如低延迟操作),请在 :doc:`注册中断处理程序 </api-reference/system/intr_alloc>` 时设置 ``ESP_INTR_FLAG_IRAM``
请确保中断处理程序访问的所有数据和函数(包括其调用的数据和函数)都存储在 IRAM 或 DRAM 中。
为函数添加 ``IRAM_ATTR`` 属性::
#include "esp_attr.h"
void IRAM_ATTR gpio_isr_handler(void* arg)
{
// ...
}
为常量添加 ``DRAM_ATTR````DRAM_STR`` 属性::
void IRAM_ATTR gpio_isr_handler(void* arg)
{
const static DRAM_ATTR uint8_t INDEX_DATA[] = { 45, 33, 12, 0 };
const static char *MSG = DRAM_STR("I am a string stored in RAM");
}
辨别哪些数据应标记为 ``DRAM_ATTR`` 可能会比较困难,除非明确标记为 ``DRAM_ATTR``,否则编译器依然可能将某些变量或表达式当做常量(即便没有 ``const`` 标记),并将其放入 flash。
如果函数或符号未被正确放入 IRAM/DRAM 中,当中断处理程序在 flash 操作期间从 flash cache 中读取数据,则会产生非法指令异常(这是因为代码未被正确放入 IRAM或读取垃圾数据这是因为常数未被正确放入 DRAM而导致崩溃。
.. _flash-partition-apis:
分区表 API
-------------------
ESP-IDF 工程使用分区表保存 SPI flash 各区信息,包括引导程序、各种应用程序二进制文件、数据及文件系统等。请参考 :doc:`分区表 </api-guides/partition-tables>`,查看详细信息。
该组件在 ``esp_partition.h`` 中声明了一些 API 函数,用以枚举在分区表中找到的分区,并对这些分区执行操作:
- :cpp:func:`esp_partition_find`:在分区表中查找特定类型的条目,返回一个不透明迭代器;
- :cpp:func:`esp_partition_get`:返回一个结构,描述给定迭代器的分区;
- :cpp:func:`esp_partition_next`:将迭代器移至下一个找到的分区;
- :cpp:func:`esp_partition_iterator_release`:释放 ``esp_partition_find`` 中返回的迭代器;
- :cpp:func:`esp_partition_find_first`:返回一个结构,描述 ``esp_partition_find`` 中找到的第一个分区;
- :cpp:func:`esp_partition_read`:cpp:func:`esp_partition_write`:cpp:func:`esp_partition_erase_range` 在分区边界内执行,等同于 :cpp:func:`spi_flash_read`:cpp:func:`spi_flash_write`:cpp:func:`spi_flash_erase_range`
.. note::
请在应用程序代码中使用上述 ``esp_partition_*`` API 函数,而非低层级的 ``spi_flash_*`` API 函数。分区表 API 函数根据存储在分区表中的数据,进行边界检查并计算在 flash 中的正确偏移量。
SPI Flash 加密
--------------------
您可以对 SPI flash 内容进行加密,并在硬件层对其进行透明解密。
请参阅 :doc:`Flash 加密 </security/flash-encryption>`,查看详细信息。
内存映射 API
------------------
ESP32 内存硬件可以将 flash 部分区域映射到指令地址空间和数据地址空间,此映射仅用于读操作。不能通过写入 flash 映射的存储区域来改变 flash 中内容。
Flash 以 64 KB 页为单位进行地址映射。内存映射硬件最多可将 4 MB flash 映射到数据地址空间,将 16 MB flash 映射到指令地址空间。请参考《ESP32 技术参考手册》查看内存映射硬件的详细信息。
请注意,有些 64 KB 页还用于将应用程序映射到内存中,因此实际可用的 64 KB 页会更少一些。
:doc:`Flash 加密 </security/flash-encryption>` 启用时,使用内存映射区域从 flash 读取数据是解密 flash 的唯一方法,解密需在硬件层进行。
内存映射 API 在 ``esp_spi_flash.h````esp_partition.h`` 中声明:
- :cpp:func:`spi_flash_mmap`:将 flash 物理地址区域映射到 CPU 指令空间或数据空间;
- :cpp:func:`spi_flash_munmap`:取消上述区域的映射;
- :cpp:func:`esp_partition_mmap`:将分区的一部分映射至 CPU 指令空间或数据空间;
:cpp:func:`spi_flash_mmap`:cpp:func:`esp_partition_mmap` 的区别如下:
- :cpp:func:`spi_flash_mmap`:需要给定一个 64 KB 对齐的物理地址;
- :cpp:func:`esp_partition_mmap`:给定分区内任意偏移量即可,此函数根据需要将返回的指针调整至指向映射内存。
内存映射在 64 KB 块中进行,如果分区已传递给 ``esp_partition_mmap``,则可读取分区外数据。
实现
--------------
``esp_flash_t`` 结构包含芯片数据和该 API 的三个重要部分:
1. 主机驱动,为访问芯片提供硬件支持;
2. 芯片驱动,为不同芯片提供兼容性服务;
3. OS 函数,在不同阶段(一级或二级 Boot 或者应用程序阶段)为部分 OS 函数提供支持(如一些锁、延迟)。
主机驱动
^^^^^^^^^^^^^^^
主机驱动依赖 ``soc/include/hal`` 文件夹下 ``spi_flash_host_drv.h`` 定义的 ``spi_flash_host_driver_t`` 接口。该接口提供了一些与芯片通信常用的函数。
在 SPI HAL 文件中,有些函数是基于现有的 ESP32 memory-spi 来实现的。但是,由于 ESP32 速度限制HAL 层无法提供某些读命令的高速实现(所以这些命令根本没有在 HAL 的文件中被实现)。``memspi_host_driver.h````.c`` 文件使用 HAL 提供的 ``common_command`` 函数实现上述读命令的高速版本,并将所有它实现的及 HAL 函数封装为 ``spi_flash_host_driver_t`` 供更上层调用。
您也可以实现自己的主机驱动,甚至只通过简单的 GPIO。只要实现了 ``spi_flash_host_driver_t`` 中所有函数不管底层硬件是什么esp_flash API 都可以访问 flash。
芯片驱动
^^^^^^^^^^^
芯片驱动在 ``spi_flash_chip_driver.h`` 中进行定义,并将主机驱动提供的基本函数进行封装以供 API 层使用。
有些操作需在执行前先发送命令,或在执行后读取状态,因此有些芯片需要不同的命令或值以及通信方式。
``generic chip`` 芯片代表了常见的 flash 芯片,其他芯片驱动可以在通用芯片的基础上进行开发。
芯片驱动依赖主机驱动。
OS 函数
^^^^^^^^^^^^
OS 函数层提供访问锁和延迟的方法。
该锁定用于解决 SPI Flash 芯片访问和其他函数之间的冲突。例如,经 SPI0/1 访问 flash 芯片时,应当禁用 cache平时用于取代码和 PSRAM 数据)。另一种情况是,一些没有 CS 线或者 CS 线受软件控制的设备(如通过 SPI 接口的 SD 卡控制)需要在一段时间内独占总线。
延时则用于某些长时操作,需要主机处于等待状态或执行轮询。
顶层 API 将芯片驱动和 OS 函数封装成一个完整的组件,并提供参数检查。