esp-idf/components/efuse/esp32/esp_efuse_utility.c

230 wiersze
9.1 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_efuse_utility.h"
#include "soc/efuse_periph.h"
#include "esp32/clk.h"
#include "esp_log.h"
#include "assert.h"
#include "sdkconfig.h"
#include <sys/param.h>
static const char *TAG = "efuse";
#ifdef CONFIG_EFUSE_VIRTUAL
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
#endif // CONFIG_EFUSE_VIRTUAL
/*Range addresses to read blocks*/
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
{EFUSE_BLK0_RDATA0_REG, EFUSE_BLK0_RDATA6_REG}, // range address of EFUSE_BLK0
{EFUSE_BLK1_RDATA0_REG, EFUSE_BLK1_RDATA7_REG}, // range address of EFUSE_BLK1
{EFUSE_BLK2_RDATA0_REG, EFUSE_BLK2_RDATA7_REG}, // range address of EFUSE_BLK2
{EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
};
/*Range addresses to write blocks*/
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
{EFUSE_BLK0_WDATA0_REG, EFUSE_BLK0_WDATA6_REG}, // range address of EFUSE_BLK0
{EFUSE_BLK1_WDATA0_REG, EFUSE_BLK1_WDATA7_REG}, // range address of EFUSE_BLK1
{EFUSE_BLK2_WDATA0_REG, EFUSE_BLK2_WDATA7_REG}, // range address of EFUSE_BLK2
{EFUSE_BLK3_WDATA0_REG, EFUSE_BLK3_WDATA7_REG} // range address of EFUSE_BLK3
};
#define EFUSE_CONF_WRITE 0x5A5A /* eFuse_pgm_op_ena, force no rd/wr disable. */
#define EFUSE_CONF_READ 0x5AA5 /* eFuse_read_op_ena, release force. */
#define EFUSE_CMD_PGM 0x02 /* Command to program. */
#define EFUSE_CMD_READ 0x01 /* Command to read. */
#ifndef CONFIG_EFUSE_VIRTUAL
// Update Efuse timing configuration
static esp_err_t esp_efuse_set_timing(void)
{
uint32_t apb_freq_mhz = esp_clk_apb_freq() / 1000000;
uint32_t clk_sel0, clk_sel1, dac_clk_div;
if (apb_freq_mhz <= 26) {
clk_sel0 = 250;
clk_sel1 = 255;
dac_clk_div = 52;
} else if (apb_freq_mhz <= 40) {
clk_sel0 = 160;
clk_sel1 = 255;
dac_clk_div = 80;
} else {
clk_sel0 = 80;
clk_sel1 = 128;
dac_clk_div = 100;
}
REG_SET_FIELD(EFUSE_DAC_CONF_REG, EFUSE_DAC_CLK_DIV, dac_clk_div);
REG_SET_FIELD(EFUSE_CLK_REG, EFUSE_CLK_SEL0, clk_sel0);
REG_SET_FIELD(EFUSE_CLK_REG, EFUSE_CLK_SEL1, clk_sel1);
return ESP_OK;
}
#endif // ifndef CONFIG_EFUSE_VIRTUAL
// Efuse read operation: copies data from physical efuses to efuse read registers.
void esp_efuse_utility_clear_program_registers(void)
{
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ);
}
// Burn values written to the efuse write registers
void esp_efuse_utility_burn_chip(void)
{
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
if (scheme == EFUSE_CODING_SCHEME_3_4) {
uint8_t buf[COUNT_EFUSE_REG_PER_BLOCK * 4] = { 0 };
int i = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
*((uint32_t*)buf + i) = REG_READ(addr_wr_block);
}
int j = 0;
uint32_t out_buf[COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
for (int k = 0; k < 4; ++k, ++j) {
memcpy((uint8_t*)out_buf + j * 6, &buf[k * 8], 6);
}
for (int k = 0; k < COUNT_EFUSE_REG_PER_BLOCK; ++k) {
REG_WRITE(range_write_addr_blocks[num_block].start + k * 4, out_buf[k]);
}
}
int subblock = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
}
}
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else
esp_efuse_set_timing();
// Permanently update values written to the efuse write registers
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_WRITE);
REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_PGM);
while (REG_READ(EFUSE_CMD_REG) != 0) {};
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ);
REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_READ);
while (REG_READ(EFUSE_CMD_REG) != 0) {};
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
}
esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
{
if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) {
return ESP_ERR_INVALID_ARG;
}
while (in_bytes_len > 0) {
uint8_t out[8];
uint8_t xor = 0;
uint8_t mul = 0;
for (int i = 0; i < 6; i++) {
xor ^= in_bytes[i];
mul += (i + 1) * __builtin_popcount(in_bytes[i]);
}
memcpy(out, in_bytes, 6); // Data bytes
out[6] = xor;
out[7] = mul;
memcpy(out_words, out, 8);
in_bytes_len -= 6;
in_bytes += 6;
out_words += 2;
}
return ESP_OK;
}
static bool read_w_data_and_check_fill(esp_efuse_block_t num_block, uint32_t *buf_w_data)
{
bool blk_is_filled = false;
int i = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
buf_w_data[i] = REG_READ(addr_wr_block);
if (buf_w_data[i] != 0) {
REG_WRITE(addr_wr_block, 0);
blk_is_filled = true;
}
}
return blk_is_filled;
}
static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
{
int i = 0;
for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++i) {
buf_r_data[i] = esp_efuse_utility_read_reg(num_block, i);
}
}
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
// This function reads EFUSE_BLKx_WDATAx_REG registers, applies coding scheme and writes encoded values back to EFUSE_BLKx_WDATAx_REG.
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
{
uint8_t buf_w_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
uint32_t reg[COUNT_EFUSE_REG_PER_BLOCK];
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
// check and apply a new coding scheme.
if (scheme != EFUSE_CODING_SCHEME_NONE) {
memset(buf_w_data, 0, sizeof(buf_w_data));
memset((uint8_t*)reg, 0, sizeof(reg));
if (read_w_data_and_check_fill(num_block, (uint32_t*)buf_w_data) == true) {
read_r_data(num_block, (uint32_t*)buf_r_data);
if (scheme == EFUSE_CODING_SCHEME_3_4) {
if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
return ESP_ERR_CODING;
}
for (int i = 0; i < 24; ++i) {
if (buf_w_data[i] != 0) {
int st_offset_buf = (i / 6) * 6;
// check that place is free.
for (int n = st_offset_buf; n < st_offset_buf + 6; ++n) {
if (buf_r_data[n] != 0) {
ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
return ESP_ERR_CODING;
}
}
esp_err_t err = esp_efuse_utility_apply_34_encoding(&buf_w_data[st_offset_buf], reg, 6);
if (err != ESP_OK) {
return err;
}
int num_reg = (st_offset_buf / 6) * 2;
for (int r = 0; r < 2; r++) {
REG_WRITE(range_write_addr_blocks[num_block].start + (num_reg + r) * 4, reg[r]);
}
i = st_offset_buf + 5;
}
}
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
uint32_t* buf_32 = (uint32_t*)buf_w_data;
for (int i = 4; i < 8; ++i) {
if (*(buf_32 + i) != 0) {
return ESP_ERR_CODING;
}
}
for (int i = 0; i < 4; ++i) {
if (buf_32[i] != 0) {
REG_WRITE(range_write_addr_blocks[num_block].start + i * 4, buf_32[i]);
REG_WRITE(range_write_addr_blocks[num_block].start + (i + 4) * 4, buf_32[i]);
}
}
}
}
}
}
return ESP_OK;
}