esp-idf/components/esp_hw_support/port/esp32s2/rtc_clk.c

476 wiersze
15 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include <stdlib.h>
#include "sdkconfig.h"
#include "esp32s2/rom/ets_sys.h" // for ets_update_cpu_frequency
#include "esp32s2/rom/rtc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/soc_caps.h"
#include "esp_rom_sys.h"
#include "esp_hw_log.h"
#include "sdkconfig.h"
#include "hal/clk_tree_ll.h"
static const char *TAG = "rtc_clk";
// Current PLL frequency, in MHZ (320 or 480). Zero if PLL is not enabled.
// On the ESP32-S2, 480MHz PLL is enabled at reset.
static uint32_t s_cur_pll_freq = CLK_LL_PLL_480M_FREQ_MHZ;
static void rtc_clk_cpu_freq_to_xtal(int freq, int div);
static void rtc_clk_cpu_freq_to_8m(void);
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
SET_PERI_REG_MASK(RTC_IO_XTAL_32P_PAD_REG, RTC_IO_X32P_MUX_SEL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32N_PAD_REG, RTC_IO_X32N_MUX_SEL);
clk_ll_xtal32k_enable(CLK_LL_XTAL32K_ENABLE_MODE_CRYSTAL);
} else {
clk_ll_xtal32k_disable();
}
}
void rtc_clk_32k_enable_external(void)
{
SET_PERI_REG_MASK(RTC_IO_XTAL_32P_PAD_REG, RTC_IO_X32P_MUX_SEL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32N_PAD_REG, RTC_IO_X32N_MUX_SEL);
clk_ll_xtal32k_enable(CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL);
}
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
/* No special bootstrapping needed for ESP32-S2, 'cycle' argument is to keep the signature
* same as for the ESP32. Just enable the XTAL here.
*/
(void)cycle;
rtc_clk_32k_enable(true);
}
bool rtc_clk_32k_enabled(void)
{
return clk_ll_xtal32k_is_enabled();
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
clk_ll_rc_fast_enable();
esp_rom_delay_us(SOC_DELAY_RC_FAST_ENABLE);
} else {
clk_ll_rc_fast_disable();
}
/* d256 should be independent configured with 8M
* Maybe we can split this function into 8m and dmd256
*/
if (d256_en) {
clk_ll_rc_fast_d256_enable();
} else {
clk_ll_rc_fast_d256_disable();
}
}
bool rtc_clk_8m_enabled(void)
{
return clk_ll_rc_fast_is_enabled();
}
bool rtc_clk_8md256_enabled(void)
{
return clk_ll_rc_fast_d256_is_enabled();
}
void rtc_clk_apll_enable(bool enable)
{
if (enable) {
clk_ll_apll_enable();
} else {
clk_ll_apll_disable();
}
}
uint32_t rtc_clk_apll_coeff_calc(uint32_t freq, uint32_t *_o_div, uint32_t *_sdm0, uint32_t *_sdm1, uint32_t *_sdm2)
{
uint32_t rtc_xtal_freq = (uint32_t)rtc_clk_xtal_freq_get();
if (rtc_xtal_freq == 0) {
// xtal_freq has not set yet
ESP_HW_LOGE(TAG, "Get xtal clock frequency failed, it has not been set yet");
abort();
}
/* Reference formula: apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536) / ((o_div + 2) * 2)
* ---------------------------------------------- -----------------
* 350 MHz <= Numerator <= 500 MHz Denominator
*/
int o_div = 0; // range: 0~31
int sdm0 = 0; // range: 0~255
int sdm1 = 0; // range: 0~255
int sdm2 = 0; // range: 0~63
/* Firstly try to satisfy the condition that the operation frequency of numerator should be greater than 350 MHz,
* i.e. xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536) >= 350 MHz, '+1' in the following code is to get the ceil value.
* With this condition, as we know the 'o_div' can't be greater than 31, then we can calculate the APLL minimum support frequency is
* 350 MHz / ((31 + 2) * 2) = 5303031 Hz (for ceil) */
o_div = (int)(SOC_APLL_MULTIPLIER_OUT_MIN_HZ / (float)(freq * 2) + 1) - 2;
if (o_div > 31) {
ESP_HW_LOGE(TAG, "Expected frequency is too small");
return 0;
}
if (o_div < 0) {
/* Try to satisfy the condition that the operation frequency of numerator should be smaller than 500 MHz,
* i.e. xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536) <= 500 MHz, we need to get the floor value in the following code.
* With this condition, as we know the 'o_div' can't be smaller than 0, then we can calculate the APLL maximum support frequency is
* 500 MHz / ((0 + 2) * 2) = 125000000 Hz */
o_div = (int)(SOC_APLL_MULTIPLIER_OUT_MAX_HZ / (float)(freq * 2)) - 2;
if (o_div < 0) {
ESP_HW_LOGE(TAG, "Expected frequency is too big");
return 0;
}
}
// sdm2 = (int)(((o_div + 2) * 2) * apll_freq / xtal_freq) - 4
sdm2 = (int)(((o_div + 2) * 2 * freq) / (rtc_xtal_freq * MHZ)) - 4;
// numrator = (((o_div + 2) * 2) * apll_freq / xtal_freq) - 4 - sdm2
float numrator = (((o_div + 2) * 2 * freq) / ((float)rtc_xtal_freq * MHZ)) - 4 - sdm2;
// If numrator is bigger than 255/256 + 255/65536 + (1/65536)/2 = 1 - (1 / 65536)/2, carry bit to sdm2
if (numrator > 1.0 - (1.0 / 65536.0) / 2.0) {
sdm2++;
}
// If numrator is smaller than (1/65536)/2, keep sdm0 = sdm1 = 0, otherwise calculate sdm0 and sdm1
else if (numrator > (1.0 / 65536.0) / 2.0) {
// Get the closest sdm1
sdm1 = (int)(numrator * 65536.0 + 0.5) / 256;
// Get the closest sdm0
sdm0 = (int)(numrator * 65536.0 + 0.5) % 256;
}
uint32_t real_freq = (uint32_t)(rtc_xtal_freq * MHZ * (4 + sdm2 + (float)sdm1/256.0 + (float)sdm0/65536.0) / (((float)o_div + 2) * 2));
*_o_div = o_div;
*_sdm0 = sdm0;
*_sdm1 = sdm1;
*_sdm2 = sdm2;
return real_freq;
}
void rtc_clk_apll_coeff_set(uint32_t o_div, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2)
{
clk_ll_apll_set_config(o_div, sdm0, sdm1, sdm2);
/* calibration */
clk_ll_apll_set_calibration();
/* wait for calibration end */
while (!clk_ll_apll_calibration_is_done()) {
/* use esp_rom_delay_us so the RTC bus doesn't get flooded */
esp_rom_delay_us(1);
}
}
void rtc_clk_slow_src_set(soc_rtc_slow_clk_src_t clk_src)
{
clk_ll_rtc_slow_set_src(clk_src);
/* Why we need to connect this clock to digital?
* Or maybe this clock should be connected to digital when xtal 32k clock is enabled instead?
*/
if (clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
clk_ll_xtal32k_digi_enable();
} else {
clk_ll_xtal32k_digi_disable();
}
esp_rom_delay_us(SOC_DELAY_RTC_SLOW_CLK_SWITCH);
}
soc_rtc_slow_clk_src_t rtc_clk_slow_src_get(void)
{
return clk_ll_rtc_slow_get_src();
}
uint32_t rtc_clk_slow_freq_get_hz(void)
{
switch (rtc_clk_slow_src_get()) {
case SOC_RTC_SLOW_CLK_SRC_RC_SLOW: return SOC_CLK_RC_SLOW_FREQ_APPROX;
case SOC_RTC_SLOW_CLK_SRC_XTAL32K: return SOC_CLK_XTAL32K_FREQ_APPROX;
case SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256: return SOC_CLK_RC_FAST_D256_FREQ_APPROX;
default: return 0;
}
}
void rtc_clk_fast_src_set(soc_rtc_fast_clk_src_t clk_src)
{
clk_ll_rtc_fast_set_src(clk_src);
esp_rom_delay_us(SOC_DELAY_RTC_FAST_CLK_SWITCH);
}
soc_rtc_fast_clk_src_t rtc_clk_fast_src_get(void)
{
return clk_ll_rtc_fast_get_src();
}
static void rtc_clk_bbpll_disable(void)
{
clk_ll_bbpll_disable();
s_cur_pll_freq = 0;
}
static void rtc_clk_bbpll_enable(void)
{
clk_ll_bbpll_enable();
}
static void rtc_clk_bbpll_configure(rtc_xtal_freq_t xtal_freq, int pll_freq)
{
assert(xtal_freq == RTC_XTAL_FREQ_40M);
/* Digital part */
clk_ll_bbpll_set_freq_mhz(pll_freq);
/* Analog part */
clk_ll_bbpll_set_config(pll_freq, xtal_freq);
// Enable calibration by software
clk_ll_bbpll_calibration_enable();
for (int ext_cap = 0; ext_cap < 16; ext_cap++) {
if (clk_ll_bbpll_calibration_is_done(ext_cap)) {
break;
}
if (ext_cap == 15) {
ESP_HW_LOGE(TAG, "BBPLL SOFTWARE CAL FAIL");
abort();
}
}
s_cur_pll_freq = pll_freq;
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
{
int dbias = (cpu_freq_mhz == 240) ? DIG_DBIAS_240M : DIG_DBIAS_80M_160M;
clk_ll_cpu_set_freq_mhz_from_pll(cpu_freq_mhz);
clk_ll_cpu_set_divider(1);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, dbias);
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
ets_update_cpu_frequency(cpu_freq_mhz);
}
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t* out_config)
{
uint32_t source_freq_mhz;
soc_cpu_clk_src_t source;
uint32_t divider;
uint32_t real_freq_mhz;
uint32_t xtal_freq = CLK_LL_XTAL_FREQ_MHZ;
if (freq_mhz <= xtal_freq && freq_mhz != 0) {
divider = xtal_freq / freq_mhz;
real_freq_mhz = (xtal_freq + divider / 2) / divider; /* round */
if (real_freq_mhz != freq_mhz) {
// no suitable divider
return false;
}
source_freq_mhz = xtal_freq;
source = SOC_CPU_CLK_SRC_XTAL;
} else if (freq_mhz == 80) {
real_freq_mhz = freq_mhz;
source = SOC_CPU_CLK_SRC_PLL;
source_freq_mhz = CLK_LL_PLL_480M_FREQ_MHZ;
divider = 6;
} else if (freq_mhz == 160) {
real_freq_mhz = freq_mhz;
source = SOC_CPU_CLK_SRC_PLL;
source_freq_mhz = CLK_LL_PLL_480M_FREQ_MHZ;
divider = 3;
} else if (freq_mhz == 240) {
real_freq_mhz = freq_mhz;
source = SOC_CPU_CLK_SRC_PLL;
source_freq_mhz = CLK_LL_PLL_480M_FREQ_MHZ;
divider = 2;
} else {
// unsupported frequency
return false;
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.div = divider,
.source_freq_mhz = source_freq_mhz,
.freq_mhz = real_freq_mhz
};
return true;
}
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t* config)
{
soc_cpu_clk_src_t old_cpu_clk_src = clk_ll_cpu_get_src();
if (old_cpu_clk_src != SOC_CPU_CLK_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(CLK_LL_XTAL_FREQ_MHZ, 1);
}
if (old_cpu_clk_src == SOC_CPU_CLK_SRC_PLL && config->source_freq_mhz != s_cur_pll_freq) {
rtc_clk_bbpll_disable();
}
if (config->source == SOC_CPU_CLK_SRC_XTAL) {
if (config->div > 1) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
}
} else if (config->source == SOC_CPU_CLK_SRC_PLL) {
rtc_clk_bbpll_enable();
rtc_clk_bbpll_configure((rtc_xtal_freq_t)CLK_LL_XTAL_FREQ_MHZ, config->source_freq_mhz);
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else if (config->source == SOC_CPU_CLK_SRC_RC_FAST) {
rtc_clk_cpu_freq_to_8m();
}
}
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t* out_config)
{
soc_cpu_clk_src_t source = clk_ll_cpu_get_src();
uint32_t source_freq_mhz;
uint32_t div;
uint32_t freq_mhz;
switch (source) {
case SOC_CPU_CLK_SRC_XTAL: {
div = clk_ll_cpu_get_divider();
source_freq_mhz = CLK_LL_XTAL_FREQ_MHZ;
freq_mhz = source_freq_mhz / div;
}
break;
case SOC_CPU_CLK_SRC_PLL: {
freq_mhz = clk_ll_cpu_get_freq_mhz_from_pll();
source_freq_mhz = clk_ll_bbpll_get_freq_mhz();
if (freq_mhz == CLK_LL_PLL_80M_FREQ_MHZ) {
div = (source_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ) ? 6 : 4;
} else if (freq_mhz == CLK_LL_PLL_160M_FREQ_MHZ) {
div = (source_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ) ? 3 : 2;
} else if (freq_mhz == CLK_LL_PLL_240M_FREQ_MHZ && source_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ) {
div = 2;
} else {
ESP_HW_LOGE(TAG, "unsupported frequency configuration");
abort();
}
break;
}
case SOC_CPU_CLK_SRC_RC_FAST:
source_freq_mhz = 8;
div = 1;
freq_mhz = source_freq_mhz;
break;
case SOC_CPU_CLK_SRC_APLL:
default:
ESP_HW_LOGE(TAG, "unsupported frequency configuration");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = div,
.freq_mhz = freq_mhz
};
}
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t* config)
{
if (config->source == SOC_CPU_CLK_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
} else if (config->source == SOC_CPU_CLK_SRC_PLL &&
s_cur_pll_freq == config->source_freq_mhz) {
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else {
/* fallback */
rtc_clk_cpu_freq_set_config(config);
}
}
void rtc_clk_cpu_freq_set_xtal(void)
{
/* BBPLL is kept enabled */
rtc_clk_cpu_freq_to_xtal(CLK_LL_XTAL_FREQ_MHZ, 1);
}
/**
* Switch to XTAL frequency. Does not disable the PLL.
*/
static void rtc_clk_cpu_freq_to_xtal(int freq, int div)
{
ets_update_cpu_frequency(freq);
/* Set divider from XTAL to APB clock. Need to set divider to 1 (reg. value 0) first. */
clk_ll_cpu_set_divider(1);
clk_ll_cpu_set_divider(div);
/* no need to adjust the REF_TICK, default register value already set it to 1MHz with any cpu clock source */
/* switch clock source */
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_XTAL);
rtc_clk_apb_freq_update(freq * MHZ);
/* lower the voltage */
int dbias = (freq <= 2) ? DIG_DBIAS_2M : DIG_DBIAS_XTAL;
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, dbias);
}
static void rtc_clk_cpu_freq_to_8m(void)
{
ets_update_cpu_frequency(8);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
clk_ll_cpu_set_divider(1);
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_RC_FAST);
rtc_clk_apb_freq_update(SOC_CLK_RC_FAST_FREQ_APPROX);
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get(void)
{
// Note, inside esp32s2-only code it's better to use CLK_LL_XTAL_FREQ_MHZ constant
return (rtc_xtal_freq_t)CLK_LL_XTAL_FREQ_MHZ;
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
clk_ll_apb_store_freq_hz(apb_freq);
}
uint32_t rtc_clk_apb_freq_get(void)
{
return clk_ll_apb_load_freq_hz();
}
void rtc_clk_divider_set(uint32_t div)
{
clk_ll_rc_slow_set_divider(div + 1);
}
void rtc_clk_8m_divider_set(uint32_t div)
{
clk_ll_rc_fast_set_divider(div + 1);
}
void rtc_dig_clk8m_enable(void)
{
clk_ll_rc_fast_digi_enable();
esp_rom_delay_us(SOC_DELAY_RC_FAST_DIGI_SWITCH);
}
void rtc_dig_clk8m_disable(void)
{
clk_ll_rc_fast_digi_disable();
esp_rom_delay_us(SOC_DELAY_RC_FAST_DIGI_SWITCH);
}
bool rtc_dig_8m_enabled(void)
{
return clk_ll_rc_fast_digi_is_enabled();
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal(void) __attribute__((alias("rtc_clk_xtal_freq_get")));