kopia lustrzana https://github.com/espressif/esp-idf
409 wiersze
14 KiB
C
409 wiersze
14 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
#include <freertos/semphr.h>
|
|
#include <rom/spi_flash.h>
|
|
#include <rom/cache.h>
|
|
#include <soc/soc.h>
|
|
#include <soc/dport_reg.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_ipc.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_spi_flash.h"
|
|
#include "esp_flash_encrypt.h"
|
|
#include "esp_log.h"
|
|
#include "cache_utils.h"
|
|
#include "esp_spiram.h"
|
|
|
|
#ifndef NDEBUG
|
|
// Enable built-in checks in queue.h in debug builds
|
|
#define INVARIANTS
|
|
#endif
|
|
#include "rom/queue.h"
|
|
|
|
#define REGIONS_COUNT 4
|
|
#define PAGES_PER_REGION 64
|
|
#define INVALID_ENTRY_VAL 0x100
|
|
#define VADDR0_START_ADDR 0x3F400000
|
|
#define VADDR1_START_ADDR 0x40000000
|
|
#define VADDR1_FIRST_USABLE_ADDR 0x400D0000
|
|
#define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + 64)
|
|
|
|
/* Ensure pages in a region haven't been marked as written via
|
|
spi_flash_mark_modified_region(). If the page has
|
|
been written, flush the entire flash cache before returning.
|
|
|
|
This ensures stale cache entries are never read after fresh calls
|
|
to spi_flash_mmap(), while keeping the number of cache flushes to a
|
|
minimum.
|
|
|
|
Returns true if cache was flushed.
|
|
*/
|
|
static bool spi_flash_ensure_unmodified_region(size_t start_addr, size_t length);
|
|
|
|
typedef struct mmap_entry_{
|
|
uint32_t handle;
|
|
int page;
|
|
int count;
|
|
LIST_ENTRY(mmap_entry_) entries;
|
|
} mmap_entry_t;
|
|
|
|
|
|
static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
|
|
LIST_HEAD_INITIALIZER(s_mmap_entries_head);
|
|
static uint8_t s_mmap_page_refcnt[REGIONS_COUNT * PAGES_PER_REGION] = {0};
|
|
static uint32_t s_mmap_last_handle = 0;
|
|
|
|
|
|
static void IRAM_ATTR spi_flash_mmap_init()
|
|
{
|
|
if (s_mmap_page_refcnt[0] != 0) {
|
|
return; /* mmap data already initialised */
|
|
}
|
|
|
|
for (int i = 0; i < REGIONS_COUNT * PAGES_PER_REGION; ++i) {
|
|
uint32_t entry_pro = DPORT_PRO_FLASH_MMU_TABLE[i];
|
|
uint32_t entry_app = DPORT_APP_FLASH_MMU_TABLE[i];
|
|
if (entry_pro != entry_app) {
|
|
// clean up entries used by boot loader
|
|
entry_pro = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
|
|
DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
|
|
}
|
|
if ((entry_pro & INVALID_ENTRY_VAL) == 0 && (i == 0 || i == PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
|
|
s_mmap_page_refcnt[i] = 1;
|
|
} else {
|
|
DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
|
|
DPORT_APP_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
|
{
|
|
esp_err_t ret;
|
|
if (src_addr & 0xffff) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (src_addr + size > g_rom_flashchip.chip_size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
// region which should be mapped
|
|
int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
|
|
int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
|
|
//prepare a linear pages array to feed into spi_flash_mmap_pages
|
|
int *pages=malloc(sizeof(int)*page_count);
|
|
if (pages==NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
for (int i = 0; i < page_count; i++) {
|
|
pages[i] = phys_page+i;
|
|
}
|
|
ret=spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
|
|
free(pages);
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR spi_flash_mmap_pages(int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
|
|
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
|
|
{
|
|
esp_err_t ret;
|
|
bool did_flush, need_flush = false;
|
|
if (!page_count) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
for (int i = 0; i < page_count; i++) {
|
|
if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
|
|
if (new_entry == 0) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
|
|
did_flush = 0;
|
|
for (int i = 0; i < page_count; i++) {
|
|
if (spi_flash_ensure_unmodified_region(pages[i]*SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE)) {
|
|
did_flush = 1;
|
|
}
|
|
}
|
|
spi_flash_mmap_init();
|
|
// figure out the memory region where we should look for pages
|
|
int region_begin; // first page to check
|
|
int region_size; // number of pages to check
|
|
uint32_t region_addr; // base address of memory region
|
|
if (memory == SPI_FLASH_MMAP_DATA) {
|
|
// Vaddr0
|
|
region_begin = 0;
|
|
region_size = 64;
|
|
region_addr = VADDR0_START_ADDR;
|
|
} else {
|
|
// only part of VAddr1 is usable, so adjust for that
|
|
region_begin = PRO_IRAM0_FIRST_USABLE_PAGE;
|
|
region_size = 3 * 64 - region_begin;
|
|
region_addr = VADDR1_FIRST_USABLE_ADDR;
|
|
}
|
|
if (region_size < page_count) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
// The following part searches for a range of MMU entries which can be used.
|
|
// Algorithm is essentially naïve strstr algorithm, except that unused MMU
|
|
// entries are treated as wildcards.
|
|
int start;
|
|
int end = region_begin + region_size - page_count;
|
|
for (start = region_begin; start < end; ++start) {
|
|
int pageno = 0;
|
|
int pos;
|
|
for (pos = start; pos < start + page_count; ++pos, ++pageno) {
|
|
int table_val = (int) DPORT_PRO_FLASH_MMU_TABLE[pos];
|
|
uint8_t refcnt = s_mmap_page_refcnt[pos];
|
|
if (refcnt != 0 && table_val != pages[pageno]) {
|
|
break;
|
|
}
|
|
}
|
|
// whole mapping range matched, bail out
|
|
if (pos - start == page_count) {
|
|
break;
|
|
}
|
|
}
|
|
// checked all the region(s) and haven't found anything?
|
|
if (start == end) {
|
|
*out_handle = 0;
|
|
*out_ptr = NULL;
|
|
ret = ESP_ERR_NO_MEM;
|
|
} else {
|
|
// set up mapping using pages
|
|
uint32_t pageno = 0;
|
|
for (int i = start; i != start + page_count; ++i, ++pageno) {
|
|
// sanity check: we won't reconfigure entries with non-zero reference count
|
|
assert(s_mmap_page_refcnt[i] == 0 ||
|
|
(DPORT_PRO_FLASH_MMU_TABLE[i] == pages[pageno] &&
|
|
DPORT_APP_FLASH_MMU_TABLE[i] == pages[pageno]));
|
|
if (s_mmap_page_refcnt[i] == 0) {
|
|
if (DPORT_PRO_FLASH_MMU_TABLE[i] != pages[pageno] || DPORT_APP_FLASH_MMU_TABLE[i] != pages[pageno]) {
|
|
DPORT_PRO_FLASH_MMU_TABLE[i] = pages[pageno];
|
|
DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
|
|
need_flush = true;
|
|
}
|
|
}
|
|
++s_mmap_page_refcnt[i];
|
|
}
|
|
|
|
LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
|
|
new_entry->page = start;
|
|
new_entry->count = page_count;
|
|
new_entry->handle = ++s_mmap_last_handle;
|
|
*out_handle = new_entry->handle;
|
|
*out_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
|
|
ret = ESP_OK;
|
|
}
|
|
|
|
/* This is a temporary fix for an issue where some
|
|
cache reads may see stale data.
|
|
|
|
Working on a long term fix that doesn't require invalidating
|
|
entire cache.
|
|
*/
|
|
if (!did_flush && need_flush) {
|
|
#if CONFIG_SPIRAM_SUPPORT
|
|
esp_spiram_writeback_cache();
|
|
#endif
|
|
Cache_Flush(0);
|
|
Cache_Flush(1);
|
|
}
|
|
|
|
spi_flash_enable_interrupts_caches_and_other_cpu();
|
|
if (*out_ptr == NULL) {
|
|
free(new_entry);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
|
|
{
|
|
spi_flash_disable_interrupts_caches_and_other_cpu();
|
|
mmap_entry_t* it;
|
|
// look for handle in linked list
|
|
for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
if (it->handle == handle) {
|
|
// for each page, decrement reference counter
|
|
// if reference count is zero, disable MMU table entry to
|
|
// facilitate debugging of use-after-free conditions
|
|
for (int i = it->page; i < it->page + it->count; ++i) {
|
|
assert(s_mmap_page_refcnt[i] > 0);
|
|
if (--s_mmap_page_refcnt[i] == 0) {
|
|
DPORT_PRO_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
|
|
DPORT_APP_FLASH_MMU_TABLE[i] = INVALID_ENTRY_VAL;
|
|
}
|
|
}
|
|
LIST_REMOVE(it, entries);
|
|
break;
|
|
}
|
|
}
|
|
spi_flash_enable_interrupts_caches_and_other_cpu();
|
|
if (it == NULL) {
|
|
assert(0 && "invalid handle, or handle already unmapped");
|
|
}
|
|
free(it);
|
|
}
|
|
|
|
void spi_flash_mmap_dump()
|
|
{
|
|
spi_flash_mmap_init();
|
|
mmap_entry_t* it;
|
|
for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
|
|
printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
|
|
}
|
|
for (int i = 0; i < REGIONS_COUNT * PAGES_PER_REGION; ++i) {
|
|
if (s_mmap_page_refcnt[i] != 0) {
|
|
printf("page %d: refcnt=%d paddr=%d\n",
|
|
i, (int) s_mmap_page_refcnt[i], DPORT_PRO_FLASH_MMU_TABLE[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 256-bit (up to 16MB of 64KB pages) bitset of all flash pages
|
|
that have been written to since last cache flush.
|
|
|
|
Before mmaping a page, need to flush caches if that page has been
|
|
written to.
|
|
|
|
Note: It's possible to do some additional performance tweaks to
|
|
this algorithm, as we actually only need to flush caches if a page
|
|
was first mmapped, then written to, then is about to be mmaped a
|
|
second time. This is a fair bit more complex though, so unless
|
|
there's an access pattern that this would significantly boost then
|
|
it's probably not worth it.
|
|
*/
|
|
static uint32_t written_pages[256/32];
|
|
|
|
static bool update_written_pages(size_t start_addr, size_t length, bool mark);
|
|
|
|
void IRAM_ATTR spi_flash_mark_modified_region(size_t start_addr, size_t length)
|
|
{
|
|
update_written_pages(start_addr, length, true);
|
|
}
|
|
|
|
static IRAM_ATTR bool spi_flash_ensure_unmodified_region(size_t start_addr, size_t length)
|
|
{
|
|
return update_written_pages(start_addr, length, false);
|
|
}
|
|
|
|
/* generic implementation for the previous two functions */
|
|
static inline IRAM_ATTR bool update_written_pages(size_t start_addr, size_t length, bool mark)
|
|
{
|
|
/* align start_addr & length to full MMU pages */
|
|
uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
|
|
length += (start_addr - page_start_addr);
|
|
length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
|
|
for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
|
|
int page = addr / SPI_FLASH_MMU_PAGE_SIZE;
|
|
if (page >= 256) {
|
|
return false; /* invalid address */
|
|
}
|
|
|
|
int idx = page / 32;
|
|
uint32_t bit = 1 << (page % 32);
|
|
|
|
if (mark) {
|
|
written_pages[idx] |= bit;
|
|
} else if (written_pages[idx] & bit) {
|
|
/* it is tempting to write a version of this that only
|
|
flushes each CPU's cache as needed. However this is
|
|
tricky because mmaped memory can be used on un-pinned
|
|
cores, or the pointer passed between CPUs.
|
|
*/
|
|
#if CONFIG_SPIRAM_SUPPORT
|
|
esp_spiram_writeback_cache();
|
|
#endif
|
|
Cache_Flush(0);
|
|
#ifndef CONFIG_FREERTOS_UNICORE
|
|
Cache_Flush(1);
|
|
#endif
|
|
bzero(written_pages, sizeof(written_pages));
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
uint32_t spi_flash_cache2phys(const void *cached)
|
|
{
|
|
intptr_t c = (intptr_t)cached;
|
|
size_t cache_page;
|
|
if (c >= VADDR1_START_ADDR && c < VADDR1_FIRST_USABLE_ADDR) {
|
|
/* IRAM address, doesn't map to flash */
|
|
return SPI_FLASH_CACHE2PHYS_FAIL;
|
|
}
|
|
else if (c < VADDR1_FIRST_USABLE_ADDR) {
|
|
/* expect cache is in DROM */
|
|
cache_page = (c - VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE;
|
|
} else {
|
|
/* expect cache is in IROM */
|
|
cache_page = (c - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + 64;
|
|
}
|
|
|
|
if (cache_page >= 256) {
|
|
/* cached address was not in IROM or DROM */
|
|
return SPI_FLASH_CACHE2PHYS_FAIL;
|
|
}
|
|
uint32_t phys_page = DPORT_PRO_FLASH_MMU_TABLE[cache_page];
|
|
if (phys_page == INVALID_ENTRY_VAL) {
|
|
/* page is not mapped */
|
|
return SPI_FLASH_CACHE2PHYS_FAIL;
|
|
}
|
|
uint32_t phys_offs = phys_page * SPI_FLASH_MMU_PAGE_SIZE;
|
|
return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
|
|
}
|
|
|
|
|
|
const void *spi_flash_phys2cache(uint32_t phys_offs, spi_flash_mmap_memory_t memory)
|
|
{
|
|
uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
|
|
int start, end, page_delta;
|
|
intptr_t base;
|
|
|
|
if (memory == SPI_FLASH_MMAP_DATA) {
|
|
start = 0;
|
|
end = 64;
|
|
base = VADDR0_START_ADDR;
|
|
page_delta = 0;
|
|
} else {
|
|
start = PRO_IRAM0_FIRST_USABLE_PAGE;
|
|
end = 256;
|
|
base = VADDR1_START_ADDR;
|
|
page_delta = 64;
|
|
}
|
|
|
|
for (int i = start; i < end; i++) {
|
|
if (DPORT_PRO_FLASH_MMU_TABLE[i] == phys_page) {
|
|
i -= page_delta;
|
|
intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i);
|
|
return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|