kopia lustrzana https://github.com/espressif/esp-idf
458 wiersze
14 KiB
C
458 wiersze
14 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <sys/reent.h>
|
|
#include <stdlib.h>
|
|
#include "esp_attr.h"
|
|
#include "rom/libc_stubs.h"
|
|
#include "rom/uart.h"
|
|
#include "soc/cpu.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
#include "freertos/portmacro.h"
|
|
#include "freertos/task.h"
|
|
|
|
void abort() {
|
|
do
|
|
{
|
|
__asm__ ("break 0,0");
|
|
*((int*) 0) = 0;
|
|
} while(true);
|
|
}
|
|
|
|
void* _malloc_r(struct _reent *r, size_t size) {
|
|
return pvPortMalloc(size);
|
|
}
|
|
|
|
void _free_r(struct _reent *r, void* ptr) {
|
|
return vPortFree(ptr);
|
|
}
|
|
|
|
void* _realloc_r(struct _reent *r, void* ptr, size_t size) {
|
|
void* new_chunk;
|
|
if (size == 0) {
|
|
if (ptr) {
|
|
vPortFree(ptr);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
new_chunk = pvPortMalloc(size);
|
|
if (new_chunk && ptr) {
|
|
memcpy(new_chunk, ptr, size);
|
|
vPortFree(ptr);
|
|
}
|
|
// realloc behaviour: don't free original chunk if alloc failed
|
|
return new_chunk;
|
|
}
|
|
|
|
void* _calloc_r(struct _reent *r, size_t count, size_t size) {
|
|
void* result = pvPortMalloc(count * size);
|
|
if (result)
|
|
{
|
|
memset(result, 0, count * size);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int _system_r(struct _reent *r, const char *str) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
int _rename_r(struct _reent *r, const char *src, const char *dst) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
clock_t _times_r(struct _reent *r, struct tms *ptms) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
// TODO: read time from RTC
|
|
int _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
void _raise_r(struct _reent *r) {
|
|
abort();
|
|
}
|
|
|
|
int _unlink_r(struct _reent *r, const char *path) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
int _link_r(struct _reent *r, const char* n1, const char* n2) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
int _stat_r(struct _reent *r, const char * path, struct stat * st) {
|
|
return 0;
|
|
}
|
|
|
|
int _fstat_r(struct _reent *r, int fd, struct stat * st) {
|
|
st->st_mode = S_IFCHR;
|
|
return 0;
|
|
}
|
|
|
|
void* _sbrk_r(struct _reent *r, ptrdiff_t sz) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
int _getpid_r(struct _reent *r) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
int _kill_r(struct _reent *r, int pid, int sig) {
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
void _exit_r(struct _reent *r, int e) {
|
|
abort();
|
|
}
|
|
|
|
int _close_r(struct _reent *r, int fd) {
|
|
return 0;
|
|
}
|
|
|
|
int _open_r(struct _reent *r, const char * path, int flags, int mode) {
|
|
return 0;
|
|
}
|
|
|
|
void _exit(int __status) {
|
|
abort();
|
|
}
|
|
|
|
ssize_t _write_r(struct _reent *r, int fd, const void * data, size_t size) {
|
|
const char *data_c = (const char *)data;
|
|
if (fd == STDOUT_FILENO) {
|
|
static _lock_t stdout_lock; /* lazily initialised */
|
|
/* Even though newlib does stream locking on stdout, we need
|
|
a dedicated stdout UART lock...
|
|
|
|
This is because each task has its own _reent structure with
|
|
unique FILEs for stdin/stdout/stderr, so these are
|
|
per-thread (lazily initialised by __sinit the first time a
|
|
stdio function is used, see findfp.c:235.
|
|
|
|
It seems like overkill to allocate a FILE-per-task and lock
|
|
a thread-local stream, but I see no easy way to fix this
|
|
(pre-__sinit_, tasks have "fake" FILEs ie __sf_fake_stdout
|
|
which aren't fully valid.)
|
|
*/
|
|
_lock_acquire_recursive(&stdout_lock);
|
|
for (size_t i = 0; i < size; i++) {
|
|
#if CONFIG_NEWLIB_STDOUT_ADDCR
|
|
if (data_c[i]=='\n') {
|
|
uart_tx_one_char('\r');
|
|
}
|
|
#endif
|
|
uart_tx_one_char(data_c[i]);
|
|
}
|
|
_lock_release_recursive(&stdout_lock);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
_off_t _lseek_r(struct _reent *r, int fd, _off_t size, int mode) {
|
|
return 0;
|
|
}
|
|
|
|
// TODO: implement reading from UART
|
|
ssize_t _read_r(struct _reent *r, int fd, void * dst, size_t size) {
|
|
return 0;
|
|
}
|
|
|
|
/* Notes on our newlib lock implementation:
|
|
*
|
|
* - Use FreeRTOS mutex semaphores as locks.
|
|
* - lock_t is int, but we store an xSemaphoreHandle there.
|
|
* - Locks are no-ops until the FreeRTOS scheduler is running.
|
|
* - Due to this, locks need to be lazily initialised the first time
|
|
* they are acquired. Initialisation/deinitialisation of locks is
|
|
* protected by lock_init_spinlock.
|
|
* - Race conditions around lazy initialisation (via lock_acquire) are
|
|
* protected against.
|
|
* - Anyone calling lock_close is reponsible for ensuring noone else
|
|
* is holding the lock at this time.
|
|
* - Race conditions between lock_close & lock_init (for the same lock)
|
|
* are the responsibility of the caller.
|
|
*/
|
|
|
|
static portMUX_TYPE lock_init_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
/* Initialise the given lock by allocating a new mutex semaphore
|
|
as the _lock_t value.
|
|
*/
|
|
static void IRAM_ATTR lock_init_generic(_lock_t *lock, uint8_t mutex_type) {
|
|
portENTER_CRITICAL(&lock_init_spinlock);
|
|
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
|
|
/* nothing to do until the scheduler is running */
|
|
*lock = 0; /* ensure lock is zeroed out, in case it's an automatic variable */
|
|
portEXIT_CRITICAL(&lock_init_spinlock);
|
|
return;
|
|
}
|
|
|
|
if (*lock) {
|
|
/* Lock already initialised (either we didn't check earlier,
|
|
or it got initialised while we were waiting for the
|
|
spinlock.) */
|
|
}
|
|
else
|
|
{
|
|
/* Create a new semaphore
|
|
|
|
this is a bit of an API violation, as we're calling the
|
|
private function xQueueCreateMutex(x) directly instead of
|
|
the xSemaphoreCreateMutex / xSemaphoreCreateRecursiveMutex
|
|
wrapper functions...
|
|
|
|
The better alternative would be to pass pointers to one of
|
|
the two xSemaphoreCreate___Mutex functions, but as FreeRTOS
|
|
implements these as macros instead of inline functions
|
|
(*party like it's 1998!*) it's not possible to do this
|
|
without writing wrappers. Doing it this way seems much less
|
|
spaghetti-like.
|
|
*/
|
|
xSemaphoreHandle new_sem = xQueueCreateMutex(mutex_type);
|
|
if (!new_sem) {
|
|
abort(); /* No more semaphores available or OOM */
|
|
}
|
|
*lock = (_lock_t)new_sem;
|
|
}
|
|
portEXIT_CRITICAL(&lock_init_spinlock);
|
|
}
|
|
|
|
void IRAM_ATTR _lock_init(_lock_t *lock) {
|
|
lock_init_generic(lock, queueQUEUE_TYPE_MUTEX);
|
|
}
|
|
|
|
void IRAM_ATTR _lock_init_recursive(_lock_t *lock) {
|
|
lock_init_generic(lock, queueQUEUE_TYPE_RECURSIVE_MUTEX);
|
|
}
|
|
|
|
/* Free the mutex semaphore pointed to by *lock, and zero it out.
|
|
|
|
Note that FreeRTOS doesn't account for deleting mutexes while they
|
|
are held, and neither do we... so take care not to delete newlib
|
|
locks while they may be held by other tasks!
|
|
*/
|
|
void IRAM_ATTR _lock_close(_lock_t *lock) {
|
|
portENTER_CRITICAL(&lock_init_spinlock);
|
|
if (*lock) {
|
|
xSemaphoreHandle h = (xSemaphoreHandle)(*lock);
|
|
#if (INCLUDE_xSemaphoreGetMutexHolder == 1)
|
|
configASSERT(xSemaphoreGetMutexHolder(h) == NULL); /* mutex should not be held */
|
|
#endif
|
|
vSemaphoreDelete(h);
|
|
*lock = 0;
|
|
}
|
|
portEXIT_CRITICAL(&lock_init_spinlock);
|
|
}
|
|
|
|
/* Acquire the mutex semaphore for lock. wait up to delay ticks.
|
|
mutex_type is queueQUEUE_TYPE_RECURSIVE_MUTEX or queueQUEUE_TYPE_MUTEX
|
|
*/
|
|
static int IRAM_ATTR lock_acquire_generic(_lock_t *lock, uint32_t delay, uint8_t mutex_type) {
|
|
xSemaphoreHandle h = (xSemaphoreHandle)(*lock);
|
|
if (!h) {
|
|
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
|
|
return 0; /* locking is a no-op before scheduler is up, so this "succeeds" */
|
|
}
|
|
/* lazy initialise lock - might have had a static initializer in newlib (that we don't use),
|
|
or _lock_init might have been called before the scheduler was running... */
|
|
lock_init_generic(lock, mutex_type);
|
|
h = (xSemaphoreHandle)(*lock);
|
|
configASSERT(h != NULL);
|
|
}
|
|
|
|
BaseType_t success;
|
|
if (cpu_in_interrupt_context()) {
|
|
/* In ISR Context */
|
|
if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
|
|
abort(); /* recursive mutexes make no sense in ISR context */
|
|
}
|
|
BaseType_t higher_task_woken = false;
|
|
success = xSemaphoreTakeFromISR(h, &higher_task_woken);
|
|
if (!success && delay > 0) {
|
|
abort(); /* Tried to block on mutex from ISR, couldn't... rewrite your program to avoid libc interactions in ISRs! */
|
|
}
|
|
if (higher_task_woken) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
else {
|
|
/* In task context */
|
|
if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
|
|
success = xSemaphoreTakeRecursive(h, delay);
|
|
} else {
|
|
success = xSemaphoreTake(h, delay);
|
|
}
|
|
}
|
|
|
|
return (success == pdTRUE) ? 0 : -1;
|
|
}
|
|
|
|
void IRAM_ATTR _lock_acquire(_lock_t *lock) {
|
|
lock_acquire_generic(lock, portMAX_DELAY, queueQUEUE_TYPE_MUTEX);
|
|
}
|
|
|
|
void IRAM_ATTR _lock_acquire_recursive(_lock_t *lock) {
|
|
lock_acquire_generic(lock, portMAX_DELAY, queueQUEUE_TYPE_RECURSIVE_MUTEX);
|
|
}
|
|
|
|
int IRAM_ATTR _lock_try_acquire(_lock_t *lock) {
|
|
return lock_acquire_generic(lock, 0, queueQUEUE_TYPE_MUTEX);
|
|
}
|
|
|
|
int IRAM_ATTR _lock_try_acquire_recursive(_lock_t *lock) {
|
|
return lock_acquire_generic(lock, 0, queueQUEUE_TYPE_RECURSIVE_MUTEX);
|
|
}
|
|
|
|
/* Release the mutex semaphore for lock.
|
|
mutex_type is queueQUEUE_TYPE_RECURSIVE_MUTEX or queueQUEUE_TYPE_MUTEX
|
|
*/
|
|
static void IRAM_ATTR lock_release_generic(_lock_t *lock, uint8_t mutex_type) {
|
|
xSemaphoreHandle h = (xSemaphoreHandle)(*lock);
|
|
if (h == NULL) {
|
|
/* This is probably because the scheduler isn't running yet,
|
|
or the scheduler just started running and some code was
|
|
"holding" a not-yet-initialised lock... */
|
|
return;
|
|
}
|
|
|
|
if (cpu_in_interrupt_context()) {
|
|
if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
|
|
abort(); /* indicates logic bug, it shouldn't be possible to lock recursively in ISR */
|
|
}
|
|
BaseType_t higher_task_woken = false;
|
|
xSemaphoreGiveFromISR(h, &higher_task_woken);
|
|
if (higher_task_woken) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
} else {
|
|
if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
|
|
xSemaphoreGiveRecursive(h);
|
|
} else {
|
|
xSemaphoreGive(h);
|
|
}
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR _lock_release(_lock_t *lock) {
|
|
lock_release_generic(lock, queueQUEUE_TYPE_MUTEX);
|
|
}
|
|
|
|
void IRAM_ATTR _lock_release_recursive(_lock_t *lock) {
|
|
lock_release_generic(lock, queueQUEUE_TYPE_RECURSIVE_MUTEX);
|
|
}
|
|
|
|
// This function is not part on newlib API, it is defined in libc/stdio/local.h
|
|
// It is called as part of _reclaim_reent via a pointer in __cleanup member
|
|
// of struct _reent.
|
|
// This function doesn't call _fclose_r for _stdin, _stdout, _stderr members
|
|
// of struct reent. Not doing so causes a memory leak each time a task is
|
|
// terminated. We replace __cleanup member with _extra_cleanup_r (below) to work
|
|
// around this.
|
|
extern void _cleanup_r(struct _reent* r);
|
|
|
|
void _extra_cleanup_r(struct _reent* r)
|
|
{
|
|
_cleanup_r(r);
|
|
_fclose_r(r, r->_stdout);
|
|
_fclose_r(r, r->_stderr);
|
|
_fclose_r(r, r->_stdin);
|
|
}
|
|
|
|
static struct _reent s_reent;
|
|
|
|
/*
|
|
General ToDo that the Xtensa newlib support code did but we do not: Close every open fd a running task had when the task
|
|
is killed. Do we want that too? - JD
|
|
*/
|
|
|
|
extern int _printf_float(struct _reent *rptr,
|
|
void *pdata,
|
|
FILE * fp,
|
|
int (*pfunc) (struct _reent *, FILE *, _CONST char *, size_t len),
|
|
va_list * ap);
|
|
|
|
|
|
extern int _scanf_float(struct _reent *rptr,
|
|
void *pdata,
|
|
FILE *fp,
|
|
va_list *ap);
|
|
|
|
|
|
static struct syscall_stub_table s_stub_table = {
|
|
.__getreent = &__getreent,
|
|
._malloc_r = &_malloc_r,
|
|
._free_r = &_free_r,
|
|
._realloc_r = &_realloc_r,
|
|
._calloc_r = &_calloc_r,
|
|
._abort = &abort,
|
|
._system_r = &_system_r,
|
|
._rename_r = &_rename_r,
|
|
._times_r = &_times_r,
|
|
._gettimeofday_r = &_gettimeofday_r,
|
|
._raise_r = &_raise_r,
|
|
._unlink_r = &_unlink_r,
|
|
._link_r = &_link_r,
|
|
._stat_r = &_stat_r,
|
|
._fstat_r = &_fstat_r,
|
|
._sbrk_r = &_sbrk_r,
|
|
._getpid_r = &_getpid_r,
|
|
._kill_r = &_kill_r,
|
|
._exit_r = &_exit_r,
|
|
._close_r = &_close_r,
|
|
._open_r = &_open_r,
|
|
._write_r = (int (*)(struct _reent *r, int, const void *, int)) &_write_r,
|
|
._lseek_r = (int (*)(struct _reent *r, int, int, int)) &_lseek_r,
|
|
._read_r = (int (*)(struct _reent *r, int, void *, int)) &_read_r,
|
|
._lock_init = &_lock_init,
|
|
._lock_init_recursive = &_lock_init_recursive,
|
|
._lock_close = &_lock_close,
|
|
._lock_close_recursive = &_lock_close,
|
|
._lock_acquire = &_lock_acquire,
|
|
._lock_acquire_recursive = &_lock_acquire_recursive,
|
|
._lock_try_acquire = &_lock_try_acquire,
|
|
._lock_try_acquire_recursive = &_lock_try_acquire_recursive,
|
|
._lock_release = &_lock_release,
|
|
._lock_release_recursive = &_lock_release_recursive,
|
|
._printf_float = &_printf_float,
|
|
._scanf_float = &_scanf_float,
|
|
};
|
|
|
|
void ets_setup_syscalls() {
|
|
syscall_table_ptr_pro = &s_stub_table;
|
|
syscall_table_ptr_app = &s_stub_table;
|
|
_GLOBAL_REENT = &s_reent;
|
|
environ = malloc(sizeof(char*));
|
|
environ[0] = NULL;
|
|
}
|
|
|
|
|