esp-idf/components/spi_flash/cache_utils.c

603 wiersze
21 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#if CONFIG_IDF_TARGET_ESP32
#include <esp32/rom/spi_flash.h>
#include <esp32/rom/cache.h>
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/spi_flash.h"
#include "esp32s2/rom/cache.h"
#include "soc/extmem_reg.h"
#include "soc/cache_memory.h"
#endif
#include <soc/soc.h>
#include <soc/dport_reg.h>
#include "sdkconfig.h"
#include "esp_ipc.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_spi_flash.h"
#include "esp_log.h"
static __attribute__((unused)) const char *TAG = "cache";
#define DPORT_CACHE_BIT(cpuid, regid) DPORT_ ## cpuid ## regid
#define DPORT_CACHE_MASK(cpuid) (DPORT_CACHE_BIT(cpuid, _CACHE_MASK_OPSDRAM) | DPORT_CACHE_BIT(cpuid, _CACHE_MASK_DROM0) | \
DPORT_CACHE_BIT(cpuid, _CACHE_MASK_DRAM1) | DPORT_CACHE_BIT(cpuid, _CACHE_MASK_IROM0) | \
DPORT_CACHE_BIT(cpuid, _CACHE_MASK_IRAM1) | DPORT_CACHE_BIT(cpuid, _CACHE_MASK_IRAM0) )
#define DPORT_CACHE_VAL(cpuid) (~(DPORT_CACHE_BIT(cpuid, _CACHE_MASK_DROM0) | \
DPORT_CACHE_BIT(cpuid, _CACHE_MASK_DRAM1) | \
DPORT_CACHE_BIT(cpuid, _CACHE_MASK_IRAM0)))
#define DPORT_CACHE_GET_VAL(cpuid) (cpuid == 0) ? DPORT_CACHE_VAL(PRO) : DPORT_CACHE_VAL(APP)
#define DPORT_CACHE_GET_MASK(cpuid) (cpuid == 0) ? DPORT_CACHE_MASK(PRO) : DPORT_CACHE_MASK(APP)
static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t *saved_state);
static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state);
static uint32_t s_flash_op_cache_state[2];
#ifndef CONFIG_FREERTOS_UNICORE
static SemaphoreHandle_t s_flash_op_mutex;
static volatile bool s_flash_op_can_start = false;
static volatile bool s_flash_op_complete = false;
#ifndef NDEBUG
static volatile int s_flash_op_cpu = -1;
#endif
void spi_flash_init_lock(void)
{
s_flash_op_mutex = xSemaphoreCreateRecursiveMutex();
assert(s_flash_op_mutex != NULL);
}
void spi_flash_op_lock(void)
{
xSemaphoreTakeRecursive(s_flash_op_mutex, portMAX_DELAY);
}
void spi_flash_op_unlock(void)
{
xSemaphoreGiveRecursive(s_flash_op_mutex);
}
/*
If you're going to modify this, keep in mind that while the flash caches of the pro and app
cpu are separate, the psram cache is *not*. If one of the CPUs returns from a flash routine
with its cache enabled but the other CPUs cache is not enabled yet, you will have problems
when accessing psram from the former CPU.
*/
void IRAM_ATTR spi_flash_op_block_func(void *arg)
{
// Disable scheduler on this CPU
vTaskSuspendAll();
// Restore interrupts that aren't located in IRAM
esp_intr_noniram_disable();
uint32_t cpuid = (uint32_t) arg;
// s_flash_op_complete flag is cleared on *this* CPU, otherwise the other
// CPU may reset the flag back to false before IPC task has a chance to check it
// (if it is preempted by an ISR taking non-trivial amount of time)
s_flash_op_complete = false;
s_flash_op_can_start = true;
while (!s_flash_op_complete) {
// busy loop here and wait for the other CPU to finish flash operation
}
// Flash operation is complete, re-enable cache
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
// Restore interrupts that aren't located in IRAM
esp_intr_noniram_enable();
// Re-enable scheduler
xTaskResumeAll();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu(void)
{
spi_flash_op_lock();
const uint32_t cpuid = xPortGetCoreID();
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
#ifndef NDEBUG
// For sanity check later: record the CPU which has started doing flash operation
assert(s_flash_op_cpu == -1);
s_flash_op_cpu = cpuid;
#endif
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
// Scheduler hasn't been started yet, it means that spi_flash API is being
// called from the 2nd stage bootloader or from user_start_cpu0, i.e. from
// PRO CPU. APP CPU is either in reset or spinning inside user_start_cpu1,
// which is in IRAM. So it is safe to disable cache for the other_cpuid here.
assert(other_cpuid == 1);
spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
} else {
// Temporarily raise current task priority to prevent a deadlock while
// waiting for IPC task to start on the other CPU
int old_prio = uxTaskPriorityGet(NULL);
vTaskPrioritySet(NULL, configMAX_PRIORITIES - 1);
// Signal to the spi_flash_op_block_task on the other CPU that we need it to
// disable cache there and block other tasks from executing.
s_flash_op_can_start = false;
esp_err_t ret = esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void *) other_cpuid);
assert(ret == ESP_OK);
while (!s_flash_op_can_start) {
// Busy loop and wait for spi_flash_op_block_func to disable cache
// on the other CPU
}
// Disable scheduler on the current CPU
vTaskSuspendAll();
// Can now set the priority back to the normal one
vTaskPrioritySet(NULL, old_prio);
// This is guaranteed to run on CPU <cpuid> because the other CPU is now
// occupied by highest priority task
assert(xPortGetCoreID() == cpuid);
}
// Kill interrupts that aren't located in IRAM
esp_intr_noniram_disable();
// This CPU executes this routine, with non-IRAM interrupts and the scheduler
// disabled. The other CPU is spinning in the spi_flash_op_block_func task, also
// with non-iram interrupts and the scheduler disabled. None of these CPUs will
// touch external RAM or flash this way, so we can safely disable caches.
spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
}
void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu(void)
{
const uint32_t cpuid = xPortGetCoreID();
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
#ifndef NDEBUG
// Sanity check: flash operation ends on the same CPU as it has started
assert(cpuid == s_flash_op_cpu);
// More sanity check: if scheduler isn't started, only CPU0 can call this.
assert(!(xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED && cpuid != 0));
s_flash_op_cpu = -1;
#endif
// Re-enable cache on both CPUs. After this, cache (flash and external RAM) should work again.
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]);
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
// Signal to spi_flash_op_block_task that flash operation is complete
s_flash_op_complete = true;
}
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
// Resume tasks on the current CPU, if the scheduler has started.
// NOTE: enabling non-IRAM interrupts has to happen before this,
// because once the scheduler has started, due to preemption the
// current task can end up being moved to the other CPU.
// But esp_intr_noniram_enable has to be called on the same CPU which
// called esp_intr_noniram_disable
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
xTaskResumeAll();
}
// Release API lock
spi_flash_op_unlock();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os(void)
{
const uint32_t cpuid = xPortGetCoreID();
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
// do not care about other CPU, it was halted upon entering panic handler
spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
// Kill interrupts that aren't located in IRAM
esp_intr_noniram_disable();
// Disable cache on this CPU as well
spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
}
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os(void)
{
const uint32_t cpuid = xPortGetCoreID();
// Re-enable cache on this CPU
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
}
#else // CONFIG_FREERTOS_UNICORE
void spi_flash_init_lock(void)
{
}
void spi_flash_op_lock(void)
{
vTaskSuspendAll();
}
void spi_flash_op_unlock(void)
{
xTaskResumeAll();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu(void)
{
spi_flash_op_lock();
esp_intr_noniram_disable();
spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
}
void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu(void)
{
spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
esp_intr_noniram_enable();
spi_flash_op_unlock();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os(void)
{
// Kill interrupts that aren't located in IRAM
esp_intr_noniram_disable();
// Disable cache on this CPU as well
spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
}
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os(void)
{
// Re-enable cache on this CPU
spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
}
#endif // CONFIG_FREERTOS_UNICORE
/**
* The following two functions are replacements for Cache_Read_Disable and Cache_Read_Enable
* function in ROM. They are used to work around a bug where Cache_Read_Disable requires a call to
* Cache_Flush before Cache_Read_Enable, even if cached data was not modified.
*/
static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t *saved_state)
{
#if CONFIG_IDF_TARGET_ESP32
uint32_t ret = 0;
const uint32_t cache_mask = DPORT_CACHE_GET_MASK(cpuid);
if (cpuid == 0) {
ret |= DPORT_GET_PERI_REG_BITS2(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, 0);
while (DPORT_GET_PERI_REG_BITS2(DPORT_PRO_DCACHE_DBUG0_REG, DPORT_PRO_CACHE_STATE, DPORT_PRO_CACHE_STATE_S) != 1) {
;
}
DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 0, DPORT_PRO_CACHE_ENABLE_S);
}
#if !CONFIG_FREERTOS_UNICORE
else {
ret |= DPORT_GET_PERI_REG_BITS2(DPORT_APP_CACHE_CTRL1_REG, cache_mask, 0);
while (DPORT_GET_PERI_REG_BITS2(DPORT_APP_DCACHE_DBUG0_REG, DPORT_APP_CACHE_STATE, DPORT_APP_CACHE_STATE_S) != 1) {
;
}
DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 0, DPORT_APP_CACHE_ENABLE_S);
}
#endif
*saved_state = ret;
#elif CONFIG_IDF_TARGET_ESP32S2
*saved_state = Cache_Suspend_ICache();
#endif
}
static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state)
{
#if CONFIG_IDF_TARGET_ESP32
const uint32_t cache_mask = DPORT_CACHE_GET_MASK(cpuid);
if (cpuid == 0) {
DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 1, DPORT_PRO_CACHE_ENABLE_S);
DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, saved_state, 0);
}
#if !CONFIG_FREERTOS_UNICORE
else {
DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 1, DPORT_APP_CACHE_ENABLE_S);
DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, cache_mask, saved_state, 0);
}
#endif
#elif CONFIG_IDF_TARGET_ESP32S2
Cache_Resume_ICache(saved_state);
#endif
}
IRAM_ATTR bool spi_flash_cache_enabled(void)
{
#if CONFIG_IDF_TARGET_ESP32
bool result = (DPORT_REG_GET_BIT(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_CACHE_ENABLE) != 0);
#if portNUM_PROCESSORS == 2
result = result && (DPORT_REG_GET_BIT(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_CACHE_ENABLE) != 0);
#endif
#elif CONFIG_IDF_TARGET_ESP32S2
bool result = (REG_GET_BIT(EXTMEM_PRO_ICACHE_CTRL_REG, EXTMEM_PRO_ICACHE_ENABLE) != 0);
#endif
return result;
}
#if CONFIG_IDF_TARGET_ESP32S2
IRAM_ATTR void esp_config_instruction_cache_mode(void)
{
cache_size_t cache_size;
cache_ways_t cache_ways;
cache_line_size_t cache_line_size;
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB
Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID);
cache_size = CACHE_SIZE_8KB;
#else
Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_ICACHE_HIGH, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID);
cache_size = CACHE_SIZE_16KB;
#endif
cache_ways = CACHE_4WAYS_ASSOC;
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_LINE_16B
cache_line_size = CACHE_LINE_SIZE_16B;
#else
cache_line_size = CACHE_LINE_SIZE_32B;
#endif
ESP_EARLY_LOGI(TAG, "Instruction cache \t: size %dKB, %dWays, cache line size %dByte", cache_size == CACHE_SIZE_8KB ? 8 : 16, 4, cache_line_size == CACHE_LINE_SIZE_16B ? 16 : 32);
Cache_Suspend_ICache();
Cache_Set_ICache_Mode(cache_size, cache_ways, cache_line_size);
Cache_Invalidate_ICache_All();
Cache_Resume_ICache(0);
}
IRAM_ATTR void esp_config_data_cache_mode(void)
{
cache_size_t cache_size;
cache_ways_t cache_ways;
cache_line_size_t cache_line_size;
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB
#if CONFIG_ESP32S2_DATA_CACHE_8KB
Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_INVALID, CACHE_MEMORY_INVALID);
cache_size = CACHE_SIZE_8KB;
#else
Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_DCACHE_HIGH, CACHE_MEMORY_INVALID);
cache_size = CACHE_SIZE_16KB;
#endif
#else
#if CONFIG_ESP32S2_DATA_CACHE_8KB
Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_ICACHE_HIGH, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_INVALID);
cache_size = CACHE_SIZE_8KB;
#else
Cache_Allocate_SRAM(CACHE_MEMORY_ICACHE_LOW, CACHE_MEMORY_ICACHE_HIGH, CACHE_MEMORY_DCACHE_LOW, CACHE_MEMORY_DCACHE_HIGH);
cache_size = CACHE_SIZE_16KB;
#endif
#endif
cache_ways = CACHE_4WAYS_ASSOC;
#if CONFIG_ESP32S2_DATA_CACHE_LINE_16B
cache_line_size = CACHE_LINE_SIZE_16B;
#else
cache_line_size = CACHE_LINE_SIZE_32B;
#endif
ESP_EARLY_LOGI(TAG, "Data cache \t\t: size %dKB, %dWays, cache line size %dByte", cache_size == CACHE_SIZE_8KB ? 8 : 16, 4, cache_line_size == CACHE_LINE_SIZE_16B ? 16 : 32);
Cache_Set_DCache_Mode(cache_size, cache_ways, cache_line_size);
Cache_Invalidate_DCache_All();
}
static IRAM_ATTR void esp_enable_cache_flash_wrap(bool icache, bool dcache)
{
uint32_t i_autoload, d_autoload;
if (icache) {
i_autoload = Cache_Suspend_ICache();
}
if (dcache) {
d_autoload = Cache_Suspend_DCache();
}
REG_SET_BIT(EXTMEM_PRO_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_PRO_CACHE_FLASH_WRAP_AROUND);
if (icache) {
Cache_Resume_ICache(i_autoload);
}
if (dcache) {
Cache_Resume_DCache(d_autoload);
}
}
#if CONFIG_ESP32S2_SPIRAM_SUPPORT
static IRAM_ATTR void esp_enable_cache_spiram_wrap(bool icache, bool dcache)
{
uint32_t i_autoload, d_autoload;
if (icache) {
i_autoload = Cache_Suspend_ICache();
}
if (dcache) {
d_autoload = Cache_Suspend_DCache();
}
REG_SET_BIT(EXTMEM_PRO_CACHE_WRAP_AROUND_CTRL_REG, EXTMEM_PRO_CACHE_SRAM_RD_WRAP_AROUND);
if (icache) {
Cache_Resume_ICache(i_autoload);
}
if (dcache) {
Cache_Resume_DCache(d_autoload);
}
}
#endif
esp_err_t esp_enable_cache_wrap(bool icache_wrap_enable, bool dcache_wrap_enable)
{
int icache_wrap_size = 0, dcache_wrap_size = 0;
int flash_wrap_sizes[2] = {-1, -1}, spiram_wrap_sizes[2] = {-1, -1};
int flash_wrap_size = 0, spiram_wrap_size = 0;
int flash_count = 0, spiram_count = 0;
int i;
bool flash_spiram_wrap_together, flash_support_wrap = true, spiram_support_wrap = true;
uint32_t drom0_in_icache = 1;//always 1 in esp32s2
if (icache_wrap_enable) {
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_LINE_16B
icache_wrap_size = 16;
#else
icache_wrap_size = 32;
#endif
}
if (dcache_wrap_enable) {
#if CONFIG_ESP32S2_DATA_CACHE_LINE_16B
dcache_wrap_size = 16;
#else
dcache_wrap_size = 32;
#endif
}
uint32_t instruction_use_spiram = 0;
uint32_t rodata_use_spiram = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern uint32_t esp_spiram_instruction_access_enabled();
instruction_use_spiram = esp_spiram_instruction_access_enabled();
#endif
#if CONFIG_SPIRAM_RODATA
extern uint32_t esp_spiram_rodata_access_enabled();
rodata_use_spiram = esp_spiram_rodata_access_enabled();
#endif
if (instruction_use_spiram) {
spiram_wrap_sizes[0] = icache_wrap_size;
} else {
flash_wrap_sizes[0] = icache_wrap_size;
}
if (rodata_use_spiram) {
if (drom0_in_icache) {
spiram_wrap_sizes[0] = icache_wrap_size;
} else {
spiram_wrap_sizes[1] = dcache_wrap_size;
flash_wrap_sizes[1] = dcache_wrap_size;
}
#ifdef CONFIG_EXT_RODATA_SUPPORT
spiram_wrap_sizes[1] = dcache_wrap_size;
#endif
} else {
if (drom0_in_icache) {
flash_wrap_sizes[0] = icache_wrap_size;
} else {
flash_wrap_sizes[1] = dcache_wrap_size;
}
#ifdef CONFIG_EXT_RODATA_SUPPORT
flash_wrap_sizes[1] = dcache_wrap_size;
#endif
}
#ifdef CONFIG_ESP32S2_SPIRAM_SUPPORT
spiram_wrap_sizes[1] = dcache_wrap_size;
#endif
for (i = 0; i < 2; i++) {
if (flash_wrap_sizes[i] != -1) {
flash_count++;
flash_wrap_size = flash_wrap_sizes[i];
}
}
for (i = 0; i < 2; i++) {
if (spiram_wrap_sizes[i] != -1) {
spiram_count++;
spiram_wrap_size = spiram_wrap_sizes[i];
}
}
if (flash_count + spiram_count <= 2) {
flash_spiram_wrap_together = false;
} else {
flash_spiram_wrap_together = true;
}
ESP_EARLY_LOGI(TAG, "flash_count=%d, size=%d, spiram_count=%d, size=%d,together=%d", flash_count, flash_wrap_size, spiram_count, spiram_wrap_size, flash_spiram_wrap_together);
if (flash_count > 1 && flash_wrap_sizes[0] != flash_wrap_sizes[1]) {
ESP_EARLY_LOGW(TAG, "Flash wrap with different length %d and %d, abort wrap.", flash_wrap_sizes[0], flash_wrap_sizes[1]);
if (spiram_wrap_size == 0) {
return ESP_FAIL;
}
if (flash_spiram_wrap_together) {
ESP_EARLY_LOGE(TAG, "Abort spiram wrap because flash wrap length not fixed.");
return ESP_FAIL;
}
}
if (spiram_count > 1 && spiram_wrap_sizes[0] != spiram_wrap_sizes[1]) {
ESP_EARLY_LOGW(TAG, "SPIRAM wrap with different length %d and %d, abort wrap.", spiram_wrap_sizes[0], spiram_wrap_sizes[1]);
if (flash_wrap_size == 0) {
return ESP_FAIL;
}
if (flash_spiram_wrap_together) {
ESP_EARLY_LOGW(TAG, "Abort flash wrap because spiram wrap length not fixed.");
return ESP_FAIL;
}
}
if (flash_spiram_wrap_together && flash_wrap_size != spiram_wrap_size) {
ESP_EARLY_LOGW(TAG, "SPIRAM has different wrap length with flash, %d and %d, abort wrap.", spiram_wrap_size, flash_wrap_size);
return ESP_FAIL;
}
#ifdef CONFIG_FLASHMODE_QIO
flash_support_wrap = true;
extern bool spi_flash_support_wrap_size(uint32_t wrap_size);
if (!spi_flash_support_wrap_size(flash_wrap_size)) {
flash_support_wrap = false;
ESP_EARLY_LOGW(TAG, "Flash do not support wrap size %d.", flash_wrap_size);
}
#else
ESP_EARLY_LOGW(TAG, "Flash is not in QIO mode, do not support wrap.");
#endif
#ifdef CONFIG_ESP32S2_SPIRAM_SUPPORT
extern bool psram_support_wrap_size(uint32_t wrap_size);
if (!psram_support_wrap_size(spiram_wrap_size)) {
spiram_support_wrap = false;
ESP_EARLY_LOGW(TAG, "SPIRAM do not support wrap size %d.", spiram_wrap_size);
}
#endif
if (flash_spiram_wrap_together && !(flash_support_wrap && spiram_support_wrap)) {
ESP_EARLY_LOGW(TAG, "Flash and SPIRAM should support wrap together.");
return ESP_FAIL;
}
extern esp_err_t spi_flash_enable_wrap(uint32_t wrap_size);
if (flash_support_wrap && flash_wrap_size > 0) {
ESP_EARLY_LOGI(TAG, "Flash wrap enabled, size = %d.", flash_wrap_size);
spi_flash_enable_wrap(flash_wrap_size);
esp_enable_cache_flash_wrap((flash_wrap_sizes[0] > 0), (flash_wrap_sizes[1] > 0));
}
#if CONFIG_ESP32S2_SPIRAM_SUPPORT
extern esp_err_t psram_enable_wrap(uint32_t wrap_size);
if (spiram_support_wrap && spiram_wrap_size > 0) {
ESP_EARLY_LOGI(TAG, "SPIRAM wrap enabled, size = %d.", spiram_wrap_size);
psram_enable_wrap(spiram_wrap_size);
esp_enable_cache_spiram_wrap((spiram_wrap_sizes[0] > 0), (spiram_wrap_sizes[1] > 0));
}
#endif
return ESP_OK;
}
#endif
void IRAM_ATTR spi_flash_enable_cache(uint32_t cpuid)
{
#if CONFIG_IDF_TARGET_ESP32
uint32_t cache_value = DPORT_CACHE_GET_VAL(cpuid);
cache_value &= DPORT_CACHE_GET_MASK(cpuid);
// Re-enable cache on this CPU
spi_flash_restore_cache(cpuid, cache_value);
#else
spi_flash_restore_cache(0, 0); // TODO cache_value should be non-zero
#endif
}