kopia lustrzana https://github.com/espressif/esp-idf
280 wiersze
7.1 KiB
C
280 wiersze
7.1 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#include "sdkconfig.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "unity.h"
|
|
#include "test_utils.h"
|
|
|
|
/* Note: these functions are included here for unit test purposes. They are not needed for writing
|
|
* normal code. If writing standard C floating point code, libgcc should correctly include implementations
|
|
* that use the floating point registers correctly. */
|
|
|
|
static float addsf(float a, float b)
|
|
{
|
|
float result;
|
|
asm volatile (
|
|
"wfr f0, %1\n"
|
|
"wfr f1, %2\n"
|
|
"add.s f2, f0, f1\n"
|
|
"rfr %0, f2\n"
|
|
:"=r"(result):"r"(a), "r"(b)
|
|
);
|
|
return result;
|
|
}
|
|
|
|
static float mulsf(float a, float b)
|
|
{
|
|
float result;
|
|
asm volatile (
|
|
"wfr f0, %1\n"
|
|
"wfr f1, %2\n"
|
|
"mul.s f2, f0, f1\n"
|
|
"rfr %0, f2\n"
|
|
:"=r"(result):"r"(a), "r"(b)
|
|
);
|
|
return result;
|
|
}
|
|
|
|
static float divsf(float a, float b)
|
|
{
|
|
float result;
|
|
asm volatile (
|
|
"wfr f0, %1\n"
|
|
"wfr f1, %2\n"
|
|
"div0.s f3, f1 \n"
|
|
"nexp01.s f4, f1 \n"
|
|
"const.s f5, 1 \n"
|
|
"maddn.s f5, f4, f3 \n"
|
|
"mov.s f6, f3 \n"
|
|
"mov.s f7, f1 \n"
|
|
"nexp01.s f8, f0 \n"
|
|
"maddn.s f6, f5, f3 \n"
|
|
"const.s f5, 1 \n"
|
|
"const.s f2, 0 \n"
|
|
"neg.s f9, f8 \n"
|
|
"maddn.s f5,f4,f6 \n"
|
|
"maddn.s f2, f9, f3 \n"
|
|
"mkdadj.s f7, f0 \n"
|
|
"maddn.s f6,f5,f6 \n"
|
|
"maddn.s f9,f4,f2 \n"
|
|
"const.s f5, 1 \n"
|
|
"maddn.s f5,f4,f6 \n"
|
|
"maddn.s f2,f9,f6 \n"
|
|
"neg.s f9, f8 \n"
|
|
"maddn.s f6,f5,f6 \n"
|
|
"maddn.s f9,f4,f2 \n"
|
|
"addexpm.s f2, f7 \n"
|
|
"addexp.s f6, f7 \n"
|
|
"divn.s f2,f9,f6\n"
|
|
"rfr %0, f2\n"
|
|
:"=r"(result):"r"(a), "r"(b)
|
|
);
|
|
return result;
|
|
}
|
|
|
|
static float sqrtsf(float a)
|
|
{
|
|
float result;
|
|
asm volatile (
|
|
"wfr f0, %1\n"
|
|
"sqrt0.s f2, f0\n"
|
|
"const.s f5, 0\n"
|
|
"maddn.s f5, f2, f2\n"
|
|
"nexp01.s f3, f0\n"
|
|
"const.s f4, 3\n"
|
|
"addexp.s f3, f4\n"
|
|
"maddn.s f4, f5, f3\n"
|
|
"nexp01.s f5, f0\n"
|
|
"neg.s f6, f5\n"
|
|
"maddn.s f2, f4, f2\n"
|
|
"const.s f1, 0\n"
|
|
"const.s f4, 0\n"
|
|
"const.s f7, 0\n"
|
|
"maddn.s f1, f6, f2\n"
|
|
"maddn.s f4, f2, f3\n"
|
|
"const.s f6, 3\n"
|
|
"maddn.s f7, f6, f2\n"
|
|
"maddn.s f5, f1, f1\n"
|
|
"maddn.s f6, f4, f2\n"
|
|
"neg.s f3, f7\n"
|
|
"maddn.s f1, f5, f3\n"
|
|
"maddn.s f7, f6, f7\n"
|
|
"mksadj.s f2, f0\n"
|
|
"nexp01.s f5, f0\n"
|
|
"maddn.s f5, f1, f1\n"
|
|
"neg.s f3, f7\n"
|
|
"addexpm.s f1, f2\n"
|
|
"addexp.s f3, f2\n"
|
|
"divn.s f1, f5, f3\n"
|
|
"rfr %0, f1\n"
|
|
:"=r"(result):"r"(a)
|
|
);
|
|
return result;
|
|
}
|
|
|
|
TEST_CASE("test FP add", "[fp]")
|
|
{
|
|
float a = 100.0f;
|
|
float b = 0.5f;
|
|
float c = addsf(a, b);
|
|
float eps = c - 100.5f;
|
|
printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
|
|
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
|
|
}
|
|
|
|
TEST_CASE("test FP mul", "[fp]")
|
|
{
|
|
float a = 100.0f;
|
|
float b = 0.05f;
|
|
float c = mulsf(a, b);
|
|
float eps = c - 5.0f;
|
|
printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
|
|
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
|
|
}
|
|
|
|
TEST_CASE("test FP div", "[fp]")
|
|
{
|
|
float a = 100.0f;
|
|
float b = 5.0f;
|
|
float c = divsf(a, b);
|
|
float eps = c - 20.0f;
|
|
printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
|
|
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
|
|
}
|
|
|
|
TEST_CASE("test FP sqrt", "[fp]")
|
|
{
|
|
float a = 100.0f;
|
|
float c = sqrtsf(a);
|
|
float eps = c - 10.0f;
|
|
printf("a=%g c=%g eps=%g\r\n", a, c, eps);
|
|
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
|
|
}
|
|
|
|
|
|
struct TestFPState {
|
|
int fail;
|
|
SemaphoreHandle_t done;
|
|
};
|
|
|
|
static const int testFpIter = 100000;
|
|
|
|
static void tskTestFP(void *pvParameters)
|
|
{
|
|
struct TestFPState *state = (struct TestFPState *) pvParameters;
|
|
for (int i = 0; i < testFpIter; ++i) {
|
|
// calculate zero in a slightly obscure way
|
|
float y = sqrtsf(addsf(1.0f, divsf(mulsf(sqrtsf(2), sqrtsf(2)), 2.0f)));
|
|
y = mulsf(y, y);
|
|
y = addsf(y, -2.0f);
|
|
// check that result is not far from zero
|
|
float eps = fabs(y);
|
|
if (eps > 1e-6f) {
|
|
state->fail++;
|
|
printf("%s: i=%d y=%f eps=%f\r\n", __func__, i, y, eps);
|
|
}
|
|
}
|
|
TEST_ASSERT(xSemaphoreGive(state->done));
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
TEST_CASE("context switch saves FP registers", "[fp]")
|
|
{
|
|
struct TestFPState state = {
|
|
.done = xSemaphoreCreateCounting(4, 0)
|
|
};
|
|
TEST_ASSERT_NOT_NULL(state.done);
|
|
const int prio = UNITY_FREERTOS_PRIORITY + 1;
|
|
TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk1", 2048, &state, prio, NULL, 0));
|
|
TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk2", 2048, &state, prio, NULL, 0));
|
|
TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk3", 2048, &state, prio, NULL, portNUM_PROCESSORS - 1));
|
|
TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk4", 2048, &state, prio, NULL, 0));
|
|
for (int i = 0; i < 4; ++i) {
|
|
TEST_ASSERT(xSemaphoreTake(state.done, pdMS_TO_TICKS(5000)));
|
|
}
|
|
vSemaphoreDelete(state.done);
|
|
if (state.fail) {
|
|
const int total = testFpIter * 4;
|
|
printf("Failed: %d, total: %d\r\n", state.fail, total);
|
|
}
|
|
TEST_ASSERT(state.fail == 0);
|
|
}
|
|
|
|
/* Note: not static, to avoid optimisation of const result */
|
|
float IRAM_ATTR test_fp_benchmark_fp_divide(int counts, unsigned *cycles)
|
|
{
|
|
float f = MAXFLOAT;
|
|
uint32_t before, after;
|
|
RSR(CCOUNT, before);
|
|
|
|
for (int i = 0; i < counts; i++) {
|
|
f /= 1.000432f;
|
|
}
|
|
|
|
RSR(CCOUNT, after);
|
|
*cycles = (after - before) / counts;
|
|
|
|
return f;
|
|
}
|
|
|
|
TEST_CASE("floating point division performance", "[fp]")
|
|
{
|
|
const unsigned COUNTS = 1000;
|
|
unsigned cycles = 0;
|
|
|
|
// initialize fpu
|
|
volatile __attribute__((unused)) float dummy = sqrtf(rand());
|
|
|
|
float f = test_fp_benchmark_fp_divide(COUNTS, &cycles);
|
|
|
|
printf("%d divisions from %f = %f\n", COUNTS, MAXFLOAT, f);
|
|
printf("Per division = %d cycles\n", cycles);
|
|
|
|
TEST_PERFORMANCE_LESS_THAN(CYCLES_PER_DIV, "%d cycles", cycles);
|
|
}
|
|
|
|
/* Note: not static, to avoid optimisation of const result */
|
|
float IRAM_ATTR test_fp_benchmark_fp_sqrt(int counts, unsigned *cycles)
|
|
{
|
|
float f = MAXFLOAT;
|
|
uint32_t before, after;
|
|
RSR(CCOUNT, before);
|
|
|
|
for (int i = 0; i < counts; i++) {
|
|
f = sqrtf(f);
|
|
}
|
|
|
|
RSR(CCOUNT, after);
|
|
*cycles = (after - before) / counts;
|
|
|
|
return f;
|
|
}
|
|
|
|
TEST_CASE("floating point square root performance", "[fp]")
|
|
{
|
|
const unsigned COUNTS = 200;
|
|
unsigned cycles = 0;
|
|
|
|
// initialize fpu
|
|
volatile float __attribute__((unused)) dummy = sqrtf(rand());
|
|
|
|
float f = test_fp_benchmark_fp_sqrt(COUNTS, &cycles);
|
|
|
|
printf("%d square roots from %f = %f\n", COUNTS, MAXFLOAT, f);
|
|
printf("Per sqrt = %d cycles\n", cycles);
|
|
|
|
TEST_PERFORMANCE_LESS_THAN(CYCLES_PER_SQRT, "%d cycles", cycles);
|
|
}
|
|
|
|
#endif // CONFIG_IDF_TARGET_ESP32
|