esp-idf/components/esp_hw_support/test/test_ds.c

444 wiersze
15 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "unity.h"
#include "soc/soc_caps.h"
#if SOC_DIG_SIGN_SUPPORTED
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/efuse.h"
#include "esp32s2/rom/digital_signature.h"
#include "esp32s2/rom/aes.h"
#include "esp32s2/rom/sha.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/efuse.h"
#include "esp32c3/rom/digital_signature.h"
#include "esp32c3/rom/hmac.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/efuse.h"
#include "esp32s3/rom/digital_signature.h"
#include "esp32s3/rom/aes.h"
#include "esp32s3/rom/sha.h"
#endif
#include "esp_ds.h"
#define NUM_RESULTS 10
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define DS_MAX_BITS (4096)
#elif CONFIG_IDF_TARGET_ESP32C3
#define DS_MAX_BITS (ETS_DS_MAX_BITS)
#endif
typedef struct {
uint8_t iv[ETS_DS_IV_LEN];
ets_ds_p_data_t p_data;
uint8_t expected_c[ETS_DS_C_LEN];
uint8_t hmac_key_idx;
uint32_t expected_results[NUM_RESULTS][DS_MAX_BITS / 32];
} encrypt_testcase_t;
// Generated header digital_signature_test_cases_<bits>.h (by gen_digital_signature_tests.py) defines
// NUM_HMAC_KEYS, test_hmac_keys, NUM_MESSAGES, NUM_CASES, test_messages[], test_cases[]
// Some adaptations were made: removed the 512 bit case and changed RSA lengths to the enums from esp_ds.h
#if DS_MAX_BITS == 4096
#define RSA_LEN (ESP_DS_RSA_4096)
#include "digital_signature_test_cases_4096.h"
#elif DS_MAX_BITS == 3072
#define RSA_LEN (ESP_DS_RSA_3072)
#include "digital_signature_test_cases_3072.h"
#endif
_Static_assert(NUM_RESULTS == NUM_MESSAGES, "expected_results size should be the same as NUM_MESSAGES in generated header");
TEST_CASE("Digital Signature Parameter Encryption data NULL", "[hw_crypto] [ds]")
{
const char iv [32];
esp_ds_p_data_t p_data;
const char key [32];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(NULL, iv, &p_data, key));
}
TEST_CASE("Digital Signature Parameter Encryption iv NULL", "[hw_crypto] [ds]")
{
esp_ds_data_t data;
esp_ds_p_data_t p_data;
const char key [32];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, NULL, &p_data, key));
}
TEST_CASE("Digital Signature Parameter Encryption p_data NULL", "[hw_crypto] [ds]")
{
esp_ds_data_t data;
const char iv [32];
const char key [32];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, NULL, key));
}
TEST_CASE("Digital Signature Parameter Encryption key NULL", "[hw_crypto] [ds]")
{
esp_ds_data_t data;
const char iv [32];
esp_ds_p_data_t p_data;
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, &p_data, NULL));
}
TEST_CASE("Digital Signature Parameter Encryption", "[hw_crypto] [ds]")
{
for (int i = 0; i < NUM_CASES; i++) {
printf("Encrypting test case %d...\n", i);
const encrypt_testcase_t *t = &test_cases[i];
esp_ds_data_t result = { };
esp_ds_p_data_t p_data;
memcpy(p_data.Y, t->p_data.Y, DS_MAX_BITS / 8);
memcpy(p_data.M, t->p_data.M, DS_MAX_BITS / 8);
memcpy(p_data.Rb, t->p_data.Rb, DS_MAX_BITS / 8);
p_data.M_prime = t->p_data.M_prime;
p_data.length = t->p_data.length;
esp_err_t r = esp_ds_encrypt_params(&result, t->iv, &p_data,
test_hmac_keys[t->hmac_key_idx]);
printf("Encrypting test case %d done\n", i);
TEST_ASSERT_EQUAL(ESP_OK, r);
TEST_ASSERT_EQUAL(t->p_data.length, result.rsa_length);
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->iv, result.iv, ETS_DS_IV_LEN);
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_c, result.c, ETS_DS_C_LEN);
}
}
TEST_CASE("Digital Signature start Invalid message", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = { };
ds_data.rsa_length = RSA_LEN;
esp_ds_context_t *ctx;
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(NULL, &ds_data, HMAC_KEY1, &ctx));
}
TEST_CASE("Digital Signature start Invalid data", "[hw_crypto] [ds]")
{
const char *message = "test";
esp_ds_context_t *ctx;
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, NULL, HMAC_KEY1, &ctx));
}
TEST_CASE("Digital Signature start Invalid context", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = RSA_LEN;
const char *message = "test";
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
}
TEST_CASE("Digital Signature RSA length 0", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = 0;
const char *message = "test";
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
}
TEST_CASE("Digital Signature RSA length too long", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = 128;
const char *message = "test";
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
}
TEST_CASE("Digital Signature start HMAC key out of range", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = RSA_LEN;
esp_ds_context_t *ctx;
const char *message = "test";
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY5 + 1, &ctx));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY0 - 1, &ctx));
}
TEST_CASE("Digital Signature finish Invalid signature ptr", "[hw_crypto] [ds]")
{
esp_ds_context_t *ctx = NULL;
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(NULL, ctx));
}
TEST_CASE("Digital Signature finish Invalid context", "[hw_crypto] [ds]")
{
uint8_t signature_data [128 * 4];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(signature_data, NULL));
}
TEST_CASE("Digital Signature Blocking Invalid message", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = { };
ds_data.rsa_length = RSA_LEN;
uint8_t signature_data [128 * 4];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(NULL, &ds_data, HMAC_KEY1, signature_data));
}
TEST_CASE("Digital Signature Blocking Invalid data", "[hw_crypto] [ds]")
{
const char *message = "test";
uint8_t signature_data [128 * 4];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, NULL, HMAC_KEY1, signature_data));
}
TEST_CASE("Digital Signature Blocking Invalid signature ptr", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = RSA_LEN;
const char *message = "test";
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, NULL));
}
TEST_CASE("Digital Signature Blocking RSA length 0", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = 0;
const char *message = "test";
uint8_t signature_data [128 * 4];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
}
TEST_CASE("Digital Signature Blocking RSA length too long", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = 128;
const char *message = "test";
uint8_t signature_data [128 * 4];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
}
TEST_CASE("Digital Signature Blocking HMAC key out of range", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = 127;
const char *message = "test";
uint8_t signature_data [128 * 4];
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY5 + 1, signature_data));
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY0 - 1, signature_data));
}
#if CONFIG_IDF_ENV_FPGA
static void burn_hmac_keys(void)
{
printf("Burning %d HMAC keys to efuse...\n", NUM_HMAC_KEYS);
for (int i = 0; i < NUM_HMAC_KEYS; i++) {
// TODO: vary the purpose across the keys
ets_efuse_purpose_t purpose = ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE;
// starting from block 1, block 0 occupied with HMAC upstream test key
int __attribute__((unused)) ets_status = ets_efuse_write_key(ETS_EFUSE_BLOCK_KEY1 + i,
purpose,
test_hmac_keys[i], 32);
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
if (ets_status == ESP_OK) {
printf("written DS test key to block [%d]!\n", ETS_EFUSE_BLOCK_KEY1 + i);
} else {
printf("writing DS test key to block [%d] failed, maybe written already\n", ETS_EFUSE_BLOCK_KEY1 + i);
}
#endif
}
#if CONFIG_IDF_TARGET_ESP32C3
/* verify the keys are what we expect (possibly they're already burned, doesn't matter but they have to match) */
uint8_t block_compare[32];
for (int i = 0; i < NUM_HMAC_KEYS; i++) {
printf("Checking key %d...\n", i);
memcpy(block_compare, (void *)ets_efuse_get_read_register_address(ETS_EFUSE_BLOCK_KEY1 + i), 32);
TEST_ASSERT_EQUAL_HEX8_ARRAY(test_hmac_keys[i], block_compare, 32);
}
#endif
}
// This test uses the HMAC_KEY0 eFuse key which hasn't been burned by burn_hmac_keys().
// HMAC_KEY0 is usually used for HMAC upstream (user access) tests.
TEST_CASE("Digital Signature wrong HMAC key purpose (FPGA only)", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = RSA_LEN;
esp_ds_context_t *ctx;
const char *message = "test";
// HMAC fails in that case because it checks for the correct purpose
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
#endif
}
// This test uses the HMAC_KEY0 eFuse key which hasn't been burned by burn_hmac_keys().
// HMAC_KEY0 is usually used for HMAC upstream (user access) tests.
TEST_CASE("Digital Signature Blocking wrong HMAC key purpose (FPGA only)", "[hw_crypto] [ds]")
{
esp_ds_data_t ds_data = {};
ds_data.rsa_length = RSA_LEN;
const char *message = "test";
uint8_t signature_data [128 * 4];
// HMAC fails in that case because it checks for the correct purpose
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
#endif
}
TEST_CASE("Digital Signature Operation (FPGA only)", "[hw_crypto] [ds]")
{
burn_hmac_keys();
for (int i = 0; i < NUM_CASES; i++) {
printf("Running test case %d...\n", i);
const encrypt_testcase_t *t = &test_cases[i];
// copy encrypt parameter test case into ds_data structure
esp_ds_data_t ds_data = { };
memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
ds_data.rsa_length = t->p_data.length;
for (int j = 0; j < NUM_MESSAGES; j++) {
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
printf(" ... message %d\n", j);
esp_ds_context_t *esp_ds_ctx;
esp_err_t ds_r = esp_ds_start_sign(test_messages[j],
&ds_data,
t->hmac_key_idx + 1,
&esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[j], signature, sizeof(signature));
}
#if CONFIG_IDF_TARGET_ESP32C3
ets_hmac_invalidate_downstream(ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE);
#endif
}
}
TEST_CASE("Digital Signature Blocking Operation (FPGA only)", "[hw_crypto] [ds]")
{
burn_hmac_keys();
for (int i = 0; i < NUM_CASES; i++) {
printf("Running test case %d...\n", i);
const encrypt_testcase_t *t = &test_cases[i];
// copy encrypt parameter test case into ds_data structure
esp_ds_data_t ds_data = { };
memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
ds_data.rsa_length = t->p_data.length;
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
esp_ds_context_t *esp_ds_ctx;
esp_err_t ds_r = esp_ds_start_sign(test_messages[0],
&ds_data,
t->hmac_key_idx + 1,
&esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
#elif CONFIG_IDF_TARGET_ESP32C3
esp_err_t ds_r = esp_ds_sign(test_messages[0],
&ds_data,
t->hmac_key_idx + 1,
signature);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
#endif
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[0], signature, sizeof(signature));
}
}
TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto] [ds]")
{
burn_hmac_keys();
// Set up a valid test case
const encrypt_testcase_t *t = &test_cases[0];
esp_ds_data_t ds_data = { };
memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
ds_data.rsa_length = t->p_data.length;
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
const uint8_t zero[DS_MAX_BITS / 8] = { 0 };
// Corrupt the IV one bit at a time, rerun and expect failure
for (int bit = 0; bit < 128; bit++) {
printf("Corrupting IV bit %d...\n", bit);
ds_data.iv[bit / 8] ^= 1 << (bit % 8);
esp_ds_context_t *esp_ds_ctx;
esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#endif
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
ds_data.iv[bit / 8] ^= 1 << (bit % 8);
}
// Corrupt encrypted key data one bit at a time, rerun and expect failure
printf("Corrupting C...\n");
for (int bit = 0; bit < ETS_DS_C_LEN * 8; bit++) {
printf("Corrupting C bit %d...\n", bit);
ds_data.c[bit / 8] ^= 1 << (bit % 8);
esp_ds_context_t *esp_ds_ctx;
esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#endif
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
ds_data.c[bit / 8] ^= 1 << (bit % 8);
}
}
#endif // CONFIG_IDF_ENV_FPGA
#endif // SOC_DIG_SIGN_SUPPORTED