esp-idf/examples/peripherals/sdio/host/main/app_main.c

518 wiersze
15 KiB
C

/* SDIO example, host (uses sdmmc_host/sdspi_host driver)
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <inttypes.h>
#include "soc/soc_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "esp_attr.h"
#include "driver/sdmmc_host.h"
#include "driver/sdspi_host.h"
#include "esp_serial_slave_link/essl_sdio.h"
#include "sdkconfig.h"
#include "sdmmc_cmd.h"
#define TIMEOUT_MAX UINT32_MAX
#define GPIO_B1 21
#if CONFIG_EXAMPLE_SLAVE_B1
#define SLAVE_PWR_GPIO GPIO_B1
#endif
#if CONFIG_EXAMPLE_ADJUSTABLE_PIN
#define PIN_CLK CONFIG_EXAMPLE_PIN_CLK
#define PIN_CMD CONFIG_EXAMPLE_PIN_CMD
#define PIN_D0 CONFIG_EXAMPLE_PIN_D0
#define PIN_D1 CONFIG_EXAMPLE_PIN_D1
#define PIN_D2 CONFIG_EXAMPLE_PIN_D2
#define PIN_D3 CONFIG_EXAMPLE_PIN_D3
#else
// For ESP32 only, when not using SDMMC host
#include "soc/sdmmc_pins.h"
#define PIN_CLK SDMMC_SLOT1_IOMUX_PIN_NUM_CLK
#define PIN_CMD SDMMC_SLOT1_IOMUX_PIN_NUM_CMD
#define PIN_D0 SDMMC_SLOT1_IOMUX_PIN_NUM_D0
#define PIN_D1 SDMMC_SLOT1_IOMUX_PIN_NUM_D1
#define PIN_D2 SDMMC_SLOT1_IOMUX_PIN_NUM_D2
#define PIN_D3 SDMMC_SLOT1_IOMUX_PIN_NUM_D3
#endif
/*
sdio host example.
This example is supposed to work together with the sdio slave example. It uses the pins as follows:
* Host Slave
* IO14 CLK
* IO15 CMD
* IO2 D0
* IO4 D1
* IO12 D2
* IO13 D3
This is the only pins that can be used in standard ESP modules. The other set of pins (6, 11, 7, 8, 9, 10)
are occupied by the spi bus communicating with the flash.
Protocol Above the ESP slave service:
- Interrupts:
0 is used to notify the slave to read the register 0.
- Registers:
- 0 is the register to hold tasks. Bits:
- 0: the slave should reset.
- 1: the slave should send interrupts.
- 2: the slave should write the shared registers acoording to the value in register 1.
- 1 is the register to hold test value.
- other registers will be written by the slave for testing.
- FIFO:
The receving FIFO is size of 256 bytes.
When the host writes something to slave recv FIFO, the slave should return it as is to the sending FIFO.
The example works as following process:
1. reset the slave.
2. tell the slave to write registers and read them back.
3. tell the slave to send interrupts to the host.
4. send data to slave FIFO and read them back.
5. loop step 4.
*/
#define WRITE_BUFFER_LEN 4096
#define READ_BUFFER_LEN 4096
#define SLAVE_BUFFER_SIZE 128
static const char TAG[] = "example_host";
#define SLAVE_INTR_NOTIFY 0
#define SLAVE_REG_JOB 0
#define SLAVE_REG_VALUE 1
typedef enum {
JOB_IDLE = 0,
JOB_RESET = 1,
JOB_SEND_INT = 2,
JOB_WRITE_REG = 4,
} example_job_t;
//host use this to inform the slave it should reset its counters
esp_err_t slave_reset(essl_handle_t handle)
{
esp_err_t ret;
ESP_LOGI(TAG, "send reset to slave...");
ret = essl_write_reg(handle, 0, JOB_RESET, NULL, TIMEOUT_MAX);
if (ret != ESP_OK) {
return ret;
}
ret = essl_send_slave_intr(handle, BIT(SLAVE_INTR_NOTIFY), TIMEOUT_MAX);
if (ret != ESP_OK) {
return ret;
}
vTaskDelay(500 / portTICK_PERIOD_MS);
ret = essl_wait_for_ready(handle, TIMEOUT_MAX);
ESP_LOGI(TAG, "slave io ready");
return ret;
}
#ifdef CONFIG_EXAMPLE_SDIO_OVER_SPI
static void gpio_d2_set_high(void)
{
gpio_config_t d2_config = {
.pin_bit_mask = BIT64(PIN_D2),
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = true,
};
gpio_config(&d2_config);
gpio_set_level(PIN_D2, 1);
}
#endif
static esp_err_t print_sdio_cis_information(sdmmc_card_t* card)
{
const size_t cis_buffer_size = 256;
uint8_t cis_buffer[cis_buffer_size];
size_t cis_data_len = 1024; //specify maximum searching range to avoid infinite loop
esp_err_t ret = ESP_OK;
ret = sdmmc_io_get_cis_data(card, cis_buffer, cis_buffer_size, &cis_data_len);
if (ret == ESP_ERR_INVALID_SIZE) {
int temp_buf_size = cis_data_len;
uint8_t* temp_buf = malloc(temp_buf_size);
assert(temp_buf);
ESP_LOGW(TAG, "CIS data longer than expected, temporary buffer allocated.");
ret = sdmmc_io_get_cis_data(card, temp_buf, temp_buf_size, &cis_data_len);
ESP_ERROR_CHECK(ret);
sdmmc_io_print_cis_info(temp_buf, cis_data_len, NULL);
free(temp_buf);
} else if (ret == ESP_OK) {
sdmmc_io_print_cis_info(cis_buffer, cis_data_len, NULL);
} else {
//including ESP_ERR_NOT_FOUND
ESP_LOGE(TAG, "failed to get the entire CIS data.");
abort();
}
return ESP_OK;
}
//host use this to initialize the slave card as well as SDIO registers
esp_err_t slave_init(essl_handle_t* handle)
{
esp_err_t err;
/* Probe */
#ifndef CONFIG_EXAMPLE_SDIO_OVER_SPI
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
#ifdef CONFIG_EXAMPLE_SDIO_4BIT
ESP_LOGI(TAG, "Probe using SD 4-bit...");
config.flags = SDMMC_HOST_FLAG_4BIT;
#else
ESP_LOGI(TAG, "Probe using SD 1-bit...");
config.flags = SDMMC_HOST_FLAG_1BIT;
#endif
#ifdef CONFIG_EXAMPLE_SDIO_HIGHSPEED
config.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
#else
config.max_freq_khz = SDMMC_FREQ_DEFAULT;
#endif
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
/* Note: For small devkits there may be no pullups on the board.
This enables the internal pullups to help evaluate the driver quickly.
However the internal pullups are not sufficient and not reliable,
please make sure external pullups are connected to the bus in your
real design.
*/
//slot_config.flags = SDMMC_SLOT_FLAG_INTERNAL_PULLUP;
//Initialize all pins to avoid them floating
//Set slot width to 4 to ignore other pin config on S3, which support at most 8 lines
slot_config.width = 4;
#ifdef CONFIG_SOC_SDMMC_USE_GPIO_MATRIX
slot_config.clk = PIN_CLK;
slot_config.cmd = PIN_CMD;
slot_config.d0 = PIN_D0;
slot_config.d1 = PIN_D1;
slot_config.d2 = PIN_D2;
slot_config.d3 = PIN_D3;
#endif // CONFIG_SOC_SDMMC_USE_GPIO_MATRIX
err = sdmmc_host_init();
ESP_ERROR_CHECK(err);
err = sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config);
ESP_ERROR_CHECK(err);
#else //over SPI
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_cs = PIN_D3;
dev_config.gpio_int = PIN_D1;
err = gpio_install_isr_service(0);
ESP_ERROR_CHECK(err);
spi_bus_config_t bus_config = {
.mosi_io_num = PIN_CMD,
.miso_io_num = PIN_D0,
.sclk_io_num = PIN_CLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = 4000,
};
err = spi_bus_initialize(dev_config.host_id, &bus_config, SPI_DMA_CH_AUTO);
ESP_ERROR_CHECK(err);
sdspi_dev_handle_t sdspi_handle;
err = sdspi_host_init();
ESP_ERROR_CHECK(err);
err = sdspi_host_init_device(&dev_config, &sdspi_handle);
ESP_ERROR_CHECK(err);
ESP_LOGI(TAG, "Probe using SPI...");
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = sdspi_handle;
//we have to pull up all the slave pins even when the pin is not used
gpio_d2_set_high();
#endif //over SPI
sdmmc_card_t *card = (sdmmc_card_t *)malloc(sizeof(sdmmc_card_t));
if (card == NULL) {
return ESP_ERR_NO_MEM;
}
for (;;) {
if (sdmmc_card_init(&config, card) == ESP_OK) {
break;
}
ESP_LOGW(TAG, "slave init failed, retry...");
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
sdmmc_card_print_info(stdout, card);
gpio_pullup_en(PIN_CMD);
gpio_pulldown_dis(PIN_CMD);
gpio_pullup_en(PIN_CLK);
gpio_pulldown_dis(PIN_CLK);
gpio_pullup_en(PIN_D0);
gpio_pulldown_dis(PIN_D0);
gpio_pullup_en(PIN_D1);
gpio_pulldown_dis(PIN_D1);
gpio_pullup_en(PIN_D2);
gpio_pulldown_dis(PIN_D2);
gpio_pullup_en(PIN_D3);
gpio_pulldown_dis(PIN_D3);
essl_sdio_config_t ser_config = {
.card = card,
.recv_buffer_size = SLAVE_BUFFER_SIZE,
};
err = essl_sdio_init_dev(handle, &ser_config);
ESP_ERROR_CHECK(err);
esp_err_t ret = essl_init(*handle, TIMEOUT_MAX);
ESP_ERROR_CHECK(ret);
ret = print_sdio_cis_information(card);
ESP_ERROR_CHECK(ret);
return ret;
}
void slave_power_on(void)
{
#ifdef SLAVE_PWR_GPIO
int level_active;
#ifdef CONFIG_EXAMPLE_SLAVE_PWR_NEGTIVE_ACTIVE
level_active = 0;
#else
level_active = 1;
#endif
gpio_config_t cfg = {
.pin_bit_mask = BIT64(GPIO_B1),
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = false,
.pull_down_en = false,
.intr_type = GPIO_INTR_DISABLE,
};
gpio_config(&cfg);
gpio_set_level(GPIO_B1, !level_active);
vTaskDelay(100);
gpio_set_level(SLAVE_PWR_GPIO, level_active);
vTaskDelay(100);
#endif
}
DMA_ATTR uint8_t rcv_buffer[READ_BUFFER_LEN];
static esp_err_t get_intr(essl_handle_t handle, uint32_t* out_raw, uint32_t* out_st)
{
esp_err_t ret = ESP_OK;
#ifndef CONFIG_EXAMPLE_NO_INTR_LINE
ret = essl_wait_int(handle, 0);
if (ret != ESP_OK) {
return ret;
}
#endif
ret = essl_get_intr(handle, out_raw, out_st, TIMEOUT_MAX);
if (ret != ESP_OK) {
return ret;
}
ret = essl_clear_intr(handle, *out_raw, TIMEOUT_MAX);
if (ret != ESP_OK) {
return ret;
}
ESP_LOGD(TAG, "intr: %08"PRIX32, *out_raw);
return ESP_OK;
}
//try to get an interrupt from the slave and handle it, return if none.
esp_err_t process_event(essl_handle_t handle)
{
uint32_t intr_raw, intr_st;
esp_err_t ret = get_intr(handle, &intr_raw, &intr_st);
if (ret == ESP_ERR_TIMEOUT) {
return ret;
}
ESP_ERROR_CHECK(ret);
for (int i = 0; i < 8; i++) {
if (intr_raw & BIT(i)) {
ESP_LOGI(TAG, "host int: %d", i);
}
}
const int wait_ms = 50;
if (intr_raw & ESSL_SDIO_DEF_ESP32.new_packet_intr_mask) {
ESP_LOGD(TAG, "new packet coming");
while (1) {
size_t size_read = READ_BUFFER_LEN;
ret = essl_get_packet(handle, rcv_buffer, READ_BUFFER_LEN, &size_read, wait_ms);
if (ret == ESP_ERR_NOT_FOUND) {
ESP_LOGE(TAG, "interrupt but no data can be read");
break;
} else if (ret != ESP_OK && ret != ESP_ERR_NOT_FINISHED) {
ESP_LOGE(TAG, "rx packet error: %08X", ret);
return ret;
}
ESP_LOGI(TAG, "receive data, size: %d", size_read);
ESP_LOG_BUFFER_HEXDUMP(TAG, rcv_buffer, size_read, ESP_LOG_INFO);
if (ret == ESP_OK) {
break;
}
}
}
return ESP_OK;
}
//tell the slave to do a job
static inline esp_err_t slave_inform_job(essl_handle_t handle, example_job_t job)
{
esp_err_t ret;
ret = essl_write_reg(handle, SLAVE_REG_JOB, job, NULL, TIMEOUT_MAX);
ESP_ERROR_CHECK(ret);
ret = essl_send_slave_intr(handle, BIT(SLAVE_INTR_NOTIFY), TIMEOUT_MAX);
ESP_ERROR_CHECK(ret);
return ret;
}
//tell the slave to write registers by write one of them, and read them back
void job_write_reg(essl_handle_t handle, int value)
{
esp_err_t ret;
uint8_t reg_read[60];
ESP_LOGI(TAG, "========JOB: write slave reg========");
ret = essl_write_reg(handle, SLAVE_REG_VALUE, value, NULL, TIMEOUT_MAX);
ESP_ERROR_CHECK(ret);
ret = slave_inform_job(handle, JOB_WRITE_REG);
ESP_ERROR_CHECK(ret);
vTaskDelay(10);
for (int i = 0; i < 60; i++) {
ESP_LOGD(TAG, "reading register %d", i);
ret = essl_read_reg(handle, i, &reg_read[i], TIMEOUT_MAX);
ESP_ERROR_CHECK(ret);
}
ESP_LOGI(TAG, "read registers:");
ESP_LOG_BUFFER_HEXDUMP(TAG, reg_read, 60, ESP_LOG_INFO);
}
//the slave only load 16 buffers a time
//so first 5 packets (use 1+1+8+4+1=15 buffers) are sent, the others (513, 517) failed (timeout)
int packet_len[] = {6, 12, 1024, 512, 3, 513, 517};
//the sending buffer should be word aligned
DMA_ATTR uint8_t send_buffer[READ_BUFFER_LEN];
//send packets to the slave (they will return and be handled by the interrupt handler)
void job_fifo(essl_handle_t handle)
{
for (int i = 0; i < READ_BUFFER_LEN; i++) {
send_buffer[i] = 0x46 + i * 5;
}
esp_err_t ret;
int pointer = 0;
ESP_LOGI(TAG, "========JOB: send fifos========");
/* CAUTION: This example shows that we can send random length of packet to the slave.
* However it takes time of two transactions if the length is not multiples of 4 bytes.
* e.g. sending 6 bytes is done by sending 4 + 2 bytes each transaction.
* Try to avoid unaligned packets if possible to get higher effeciency.
*/
for (int i = 0; i < sizeof(packet_len) / sizeof(int); i++) {
const int wait_ms = 50;
int length = packet_len[i];
ret = essl_send_packet(handle, send_buffer + pointer, length, wait_ms);
if (ret == ESP_ERR_TIMEOUT || ret == ESP_ERR_NOT_FOUND) {
ESP_LOGD(TAG, "slave not ready to receive packet %d", i); // And there are several packets expected to timeout.
} else {
ESP_ERROR_CHECK(ret);
ESP_LOGI(TAG, "send packet length: %d", length);
}
pointer += (length + 3) & (~3); //the length can be random, but data should start at the 32-bit boundary.
}
}
//inform the slave to send interrupts to host (the interrupts will be handled in the interrupt handler)
void job_getint(essl_handle_t handle)
{
ESP_LOGI(TAG, "========JOB: get interrupts from slave========");
slave_inform_job(handle, JOB_SEND_INT);
}
void app_main(void)
{
essl_handle_t handle;
esp_err_t err;
//enable the power if on espressif SDIO master-slave board
slave_power_on();
ESP_LOGI(TAG, "host ready, start initializing slave...");
err = slave_init(&handle);
ESP_ERROR_CHECK(err);
err = slave_reset(handle);
ESP_ERROR_CHECK(err);
uint32_t start, end;
job_write_reg(handle, 10);
int times = 2;
while (1) {
job_getint(handle);
start = xTaskGetTickCount();
while (1) {
process_event(handle);
vTaskDelay(1);
end = xTaskGetTickCount();
if ((end - start) * 1000 / CONFIG_FREERTOS_HZ > 5000) {
break;
}
}
if (--times == 0) {
break;
}
};
while (1) {
job_fifo(handle);
start = xTaskGetTickCount();
while (1) {
process_event(handle);
vTaskDelay(1);
end = xTaskGetTickCount();
if ((end - start) * 1000 / CONFIG_FREERTOS_HZ > 2000) {
break;
}
}
}
}