kopia lustrzana https://github.com/espressif/esp-idf
316 wiersze
11 KiB
C
316 wiersze
11 KiB
C
#include "sdkconfig.h"
|
|
#include <string.h>
|
|
#include "unity.h"
|
|
#include "wear_levelling.h"
|
|
#include "test_utils.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/portable.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/clk.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2
|
|
#include "esp32s2/clk.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S3
|
|
#include "esp32s3/clk.h"
|
|
#endif
|
|
#include "soc/cpu.h"
|
|
#include "esp_rom_sys.h"
|
|
|
|
TEST_CASE("wl_unmount doesn't leak memory", "[wear_levelling]")
|
|
{
|
|
const esp_partition_t *partition = get_test_data_partition();
|
|
wl_handle_t handle;
|
|
// dummy unmount is needed to initialize static lock in WL
|
|
wl_unmount(WL_INVALID_HANDLE);
|
|
size_t size_before = xPortGetFreeHeapSize();
|
|
TEST_ESP_OK(wl_mount(partition, &handle));
|
|
wl_unmount(handle);
|
|
size_t size_after = xPortGetFreeHeapSize();
|
|
|
|
// Original code:
|
|
//TEST_ASSERT_EQUAL_HEX32(size_before, size_after);
|
|
// Workaround for problem with heap size calculation:
|
|
ptrdiff_t stack_diff = size_before - size_after;
|
|
stack_diff = abs(stack_diff);
|
|
if (stack_diff > 8) TEST_ASSERT_EQUAL(0, stack_diff);
|
|
}
|
|
|
|
TEST_CASE("wl_mount check partition parameters", "[wear_levelling][ignore]")
|
|
{
|
|
const esp_partition_t *test_partition = get_test_data_partition();
|
|
esp_partition_t fake_partition;
|
|
memcpy(&fake_partition, test_partition, sizeof(fake_partition));
|
|
wl_handle_t handle;
|
|
size_t size_before, size_after;
|
|
wl_unmount(WL_INVALID_HANDLE);
|
|
|
|
esp_partition_erase_range(test_partition, 0, test_partition->size);
|
|
// test small partition: result should be error
|
|
for (int i=0 ; i< 5 ; i++)
|
|
{
|
|
fake_partition.size = SPI_FLASH_SEC_SIZE*(i);
|
|
size_before = xPortGetFreeHeapSize();
|
|
TEST_ESP_ERR(ESP_ERR_INVALID_ARG, wl_mount(&fake_partition, &handle));
|
|
size_after = xPortGetFreeHeapSize();
|
|
|
|
// Original code:
|
|
//TEST_ASSERT_EQUAL_HEX32(size_before, size_after);
|
|
// Workaround for problem with heap size calculation:
|
|
ptrdiff_t stack_diff = size_before - size_after;
|
|
stack_diff = abs(stack_diff);
|
|
if (stack_diff > 8) TEST_ASSERT_EQUAL(0, stack_diff);
|
|
}
|
|
|
|
// test minimum size partition: result should be OK
|
|
fake_partition.size = SPI_FLASH_SEC_SIZE * 5;
|
|
size_before = xPortGetFreeHeapSize();
|
|
TEST_ESP_OK(wl_mount(&fake_partition, &handle));
|
|
wl_unmount(handle);
|
|
printf("Test done\n");
|
|
size_after = xPortGetFreeHeapSize();
|
|
|
|
// Original code:
|
|
//TEST_ASSERT_EQUAL_HEX32(size_before, size_after);
|
|
// Workaround for problem with heap size calculation:
|
|
ptrdiff_t stack_diff = size_before - size_after;
|
|
stack_diff = abs(stack_diff);
|
|
if (stack_diff > 8) TEST_ASSERT_EQUAL(0, stack_diff);
|
|
}
|
|
|
|
typedef struct {
|
|
size_t offset;
|
|
bool write;
|
|
size_t word_count;
|
|
int seed;
|
|
SemaphoreHandle_t done;
|
|
int result;
|
|
wl_handle_t handle;
|
|
} read_write_test_arg_t;
|
|
|
|
#define READ_WRITE_TEST_ARG_INIT(offset_, seed_, handle_, count_) \
|
|
{ \
|
|
.offset = offset_, \
|
|
.seed = seed_, \
|
|
.word_count = count_, \
|
|
.write = true, \
|
|
.done = xSemaphoreCreateBinary(), \
|
|
.handle = handle_ \
|
|
}
|
|
|
|
static void read_write_task(void* param)
|
|
{
|
|
read_write_test_arg_t* args = (read_write_test_arg_t*) param;
|
|
esp_err_t err;
|
|
srand(args->seed);
|
|
for (size_t i = 0; i < args->word_count; ++i) {
|
|
uint32_t val = rand();
|
|
if (args->write) {
|
|
err = wl_write(args->handle, args->offset + i * sizeof(val), &val, sizeof(val));
|
|
if (err != ESP_OK) {
|
|
args->result = err;
|
|
goto done;
|
|
}
|
|
} else {
|
|
uint32_t rval;
|
|
err = wl_read(args->handle, args->offset + i * sizeof(rval), &rval, sizeof(rval));
|
|
if (err != ESP_OK || rval != val) {
|
|
esp_rom_printf("E: i=%d, cnt=%d rval=%d val=%d\n\n", i, args->word_count, rval, val);
|
|
args->result = ESP_FAIL;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
args->result = ESP_OK;
|
|
|
|
done:
|
|
xSemaphoreGive(args->done);
|
|
vTaskDelay(1);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
TEST_CASE("multiple tasks can access wl handle simultaneously", "[wear_levelling]")
|
|
{
|
|
const esp_partition_t *partition = get_test_data_partition();
|
|
wl_handle_t handle;
|
|
TEST_ESP_OK(wl_mount(partition, &handle));
|
|
|
|
size_t sector_size = wl_sector_size(handle);
|
|
TEST_ESP_OK(wl_erase_range(handle, 0, sector_size * 8));
|
|
read_write_test_arg_t args1 = READ_WRITE_TEST_ARG_INIT(0, 1, handle, sector_size/sizeof(uint32_t));
|
|
read_write_test_arg_t args2 = READ_WRITE_TEST_ARG_INIT(sector_size, 2, handle, sector_size/sizeof(uint32_t));
|
|
const size_t stack_size = 8192;
|
|
|
|
printf("writing 1 and 2\n");
|
|
const int cpuid_0 = 0;
|
|
const int cpuid_1 = portNUM_PROCESSORS - 1;
|
|
xTaskCreatePinnedToCore(&read_write_task, "rw1", stack_size, &args1, 3, NULL, cpuid_0);
|
|
xTaskCreatePinnedToCore(&read_write_task, "rw2", stack_size, &args2, 3, NULL, cpuid_1);
|
|
|
|
xSemaphoreTake(args1.done, portMAX_DELAY);
|
|
printf("f1 done\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
|
|
xSemaphoreTake(args2.done, portMAX_DELAY);
|
|
printf("f2 done\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
|
|
|
|
args1.write = false;
|
|
args2.write = false;
|
|
read_write_test_arg_t args3 = READ_WRITE_TEST_ARG_INIT(2 * sector_size, 3, handle, sector_size/sizeof(uint32_t));
|
|
read_write_test_arg_t args4 = READ_WRITE_TEST_ARG_INIT(3 * sector_size, 4, handle, sector_size/sizeof(uint32_t));
|
|
|
|
printf("reading 1 and 2, writing 3 and 4\n");
|
|
xTaskCreatePinnedToCore(&read_write_task, "rw3", stack_size, &args3, 3, NULL, cpuid_1);
|
|
xTaskCreatePinnedToCore(&read_write_task, "rw4", stack_size, &args4, 3, NULL, cpuid_0);
|
|
xTaskCreatePinnedToCore(&read_write_task, "rw1", stack_size, &args1, 3, NULL, cpuid_0);
|
|
xTaskCreatePinnedToCore(&read_write_task, "rw2", stack_size, &args2, 3, NULL, cpuid_1);
|
|
|
|
xSemaphoreTake(args1.done, portMAX_DELAY);
|
|
printf("f1 done\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
|
|
xSemaphoreTake(args2.done, portMAX_DELAY);
|
|
printf("f2 done\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
|
|
xSemaphoreTake(args3.done, portMAX_DELAY);
|
|
printf("f3 done\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, args3.result);
|
|
xSemaphoreTake(args4.done, portMAX_DELAY);
|
|
printf("f4 done\n");
|
|
TEST_ASSERT_EQUAL(ESP_OK, args4.result);
|
|
|
|
vSemaphoreDelete(args1.done);
|
|
vSemaphoreDelete(args2.done);
|
|
vSemaphoreDelete(args3.done);
|
|
vSemaphoreDelete(args4.done);
|
|
wl_unmount(handle);
|
|
}
|
|
|
|
#define TEST_SECTORS_COUNT 8
|
|
|
|
static void check_mem_data(wl_handle_t handle, uint32_t init_val, uint32_t* buff)
|
|
{
|
|
size_t sector_size = wl_sector_size(handle);
|
|
|
|
for (int m=0 ; m < TEST_SECTORS_COUNT ; m++) {
|
|
TEST_ESP_OK(wl_read(handle, sector_size * m, buff, sector_size));
|
|
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
|
|
uint32_t compare_val = init_val + i + m*sector_size;
|
|
TEST_ASSERT_EQUAL( buff[i], compare_val);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// We write complete memory with defined data
|
|
// And then write one sector many times.
|
|
// A data in other secors should be the same.
|
|
// We do this also with unmount
|
|
TEST_CASE("multiple write is correct", "[wear_levelling]")
|
|
{
|
|
const esp_partition_t *partition = get_test_data_partition();
|
|
esp_partition_t fake_partition;
|
|
memcpy(&fake_partition, partition, sizeof(fake_partition));
|
|
|
|
fake_partition.size = SPI_FLASH_SEC_SIZE*(4 + TEST_SECTORS_COUNT);
|
|
|
|
wl_handle_t handle;
|
|
TEST_ESP_OK(wl_mount(&fake_partition, &handle));
|
|
|
|
size_t sector_size = wl_sector_size(handle);
|
|
// Erase 8 sectors
|
|
TEST_ESP_OK(wl_erase_range(handle, 0, sector_size * TEST_SECTORS_COUNT));
|
|
// Write data to all sectors
|
|
printf("Check 1 sector_size=0x%08x\n", sector_size);
|
|
// Set initial random value
|
|
uint32_t init_val = rand();
|
|
|
|
uint32_t* buff = (uint32_t*)malloc(sector_size);
|
|
for (int m=0 ; m < TEST_SECTORS_COUNT ; m++) {
|
|
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
|
|
buff[i] = init_val + i + m*sector_size;
|
|
}
|
|
TEST_ESP_OK(wl_erase_range(handle, sector_size*m, sector_size));
|
|
TEST_ESP_OK(wl_write(handle, sector_size*m, buff, sector_size));
|
|
}
|
|
|
|
check_mem_data(handle, init_val, buff);
|
|
|
|
uint32_t start;
|
|
RSR(CCOUNT, start);
|
|
|
|
|
|
for (int m=0 ; m< 100000 ; m++) {
|
|
uint32_t sector = m % TEST_SECTORS_COUNT;
|
|
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
|
|
buff[i] = init_val + i + sector*sector_size;
|
|
}
|
|
TEST_ESP_OK(wl_erase_range(handle, sector_size*sector, sector_size));
|
|
TEST_ESP_OK(wl_write(handle, sector_size*sector, buff, sector_size));
|
|
check_mem_data(handle, init_val, buff);
|
|
|
|
uint32_t end;
|
|
RSR(CCOUNT, end);
|
|
uint32_t ms = (end - start) / (esp_clk_cpu_freq() / 1000);
|
|
printf("loop %4i pass, time= %ims\n", m, ms);
|
|
if (ms > 10000) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(buff);
|
|
wl_unmount(handle);
|
|
}
|
|
|
|
extern const uint8_t test_partition_v1_bin_start[] asm("_binary_test_partition_v1_bin_start");
|
|
extern const uint8_t test_partition_v1_bin_end[] asm("_binary_test_partition_v1_bin_end");
|
|
|
|
#define COMPARE_START_CONST 0x12340000
|
|
|
|
// We write to partition prepared image with V1
|
|
// Then we convert image to new version and verifying the data
|
|
|
|
TEST_CASE("Version update test", "[wear_levelling]")
|
|
{
|
|
const esp_partition_t *partition = get_test_data_partition();
|
|
esp_partition_t fake_partition;
|
|
memcpy(&fake_partition, partition, sizeof(fake_partition));
|
|
|
|
if (partition->encrypted)
|
|
{
|
|
printf("Update from V1 to V2 will not work.\n");
|
|
return;
|
|
}
|
|
fake_partition.size = (size_t)(test_partition_v1_bin_end - test_partition_v1_bin_start);
|
|
|
|
printf("Data file size = %i, partition address = 0x%08x, file addr=0x%08x\n", (uint32_t)fake_partition.size, (uint32_t)fake_partition.address, (uint32_t)test_partition_v1_bin_start);
|
|
|
|
esp_partition_erase_range(&fake_partition, 0, fake_partition.size);
|
|
|
|
esp_partition_write(&fake_partition, 0, test_partition_v1_bin_start, fake_partition.size);
|
|
for (int i=0 ; i< 3 ; i++)
|
|
{
|
|
printf("Pass %i\n", i);
|
|
wl_handle_t handle;
|
|
TEST_ESP_OK(wl_mount(&fake_partition, &handle));
|
|
size_t sector_size = wl_sector_size(handle);
|
|
uint32_t* buff = (uint32_t*)malloc(sector_size);
|
|
|
|
uint32_t init_val = COMPARE_START_CONST;
|
|
int test_count = fake_partition.size/sector_size - 4;
|
|
|
|
for (int m=0 ; m < test_count; m++) {
|
|
TEST_ESP_OK(wl_read(handle, sector_size * m, buff, sector_size));
|
|
for (int i=0 ; i< sector_size/sizeof(uint32_t) ; i++) {
|
|
uint32_t compare_val = init_val + i + m*sector_size;
|
|
if (buff[i] != compare_val)
|
|
{
|
|
printf("error compare: 0x%08x != 0x%08x \n", buff[i], compare_val);
|
|
}
|
|
TEST_ASSERT_EQUAL( buff[i], compare_val);
|
|
}
|
|
}
|
|
free(buff);
|
|
wl_unmount(handle);
|
|
}
|
|
}
|