esp-idf/components/hal/emac_hal.c

515 wiersze
22 KiB
C

// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "hal/emac_hal.h"
#include "hal/emac_ll.h"
#include "hal/gpio_ll.h"
#define ETH_CRC_LENGTH (4)
void emac_hal_iomux_init_mii(void)
{
/* TX_CLK to GPIO0 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_EMAC_TX_CLK);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[0]);
/* TX_EN to GPIO21 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO21_U, FUNC_GPIO21_EMAC_TX_EN);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[21]);
/* TXD0 to GPIO19 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO19_U, FUNC_GPIO19_EMAC_TXD0);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[19]);
/* TXD1 to GPIO22 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO22_U, FUNC_GPIO22_EMAC_TXD1);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[22]);
/* TXD2 to MTMS */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_MTMS_U, FUNC_MTMS_EMAC_TXD2);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[14]);
/* TXD3 to MTDI */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_MTDI_U, FUNC_MTDI_EMAC_TXD3);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[12]);
/* RX_CLK to GPIO5 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO5_U, FUNC_GPIO5_EMAC_RX_CLK);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[5]);
/* RX_DV to GPIO27 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO27_U, FUNC_GPIO27_EMAC_RX_DV);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[27]);
/* RXD0 to GPIO25 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO25_U, FUNC_GPIO25_EMAC_RXD0);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[25]);
/* RXD1 to GPIO26 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO26_U, FUNC_GPIO26_EMAC_RXD1);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[26]);
/* RXD2 to U0TXD */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_EMAC_RXD2);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[1]);
/* RXD3 to MTDO */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_MTDO_U, FUNC_MTDO_EMAC_RXD3);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[15]);
}
void emac_hal_iomux_rmii_clk_input(void)
{
/* REF_CLK(RMII mode) to GPIO0 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_EMAC_TX_CLK);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[0]);
}
void emac_hal_iomux_rmii_clk_ouput(int num)
{
switch (num) {
case 0:
/* APLL clock output to GPIO0 (must be configured to 50MHz!) */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[0]);
break;
case 16:
/* RMII CLK (50MHz) output to GPIO16 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO16_U, FUNC_GPIO16_EMAC_CLK_OUT);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[16]);
break;
case 17:
/* RMII CLK (50MHz) output to GPIO17 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO17_U, FUNC_GPIO17_EMAC_CLK_OUT_180);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[17]);
break;
default:
break;
}
}
void emac_hal_iomux_init_rmii(void)
{
/* TX_EN to GPIO21 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO21_U, FUNC_GPIO21_EMAC_TX_EN);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[21]);
/* TXD0 to GPIO19 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO19_U, FUNC_GPIO19_EMAC_TXD0);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[19]);
/* TXD1 to GPIO22 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO22_U, FUNC_GPIO22_EMAC_TXD1);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[22]);
/* CRS_DV to GPIO27 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO27_U, FUNC_GPIO27_EMAC_RX_DV);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[27]);
/* RXD0 to GPIO25 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO25_U, FUNC_GPIO25_EMAC_RXD0);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[25]);
/* RXD1 to GPIO26 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO26_U, FUNC_GPIO26_EMAC_RXD1);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[26]);
}
void emac_hal_iomux_init_tx_er(void)
{
/* TX_ER to GPIO4 */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_GPIO4_U, FUNC_GPIO4_EMAC_TX_ER);
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[4]);
}
void emac_hal_iomux_init_rx_er(void)
{
/* RX_ER to MTCK */
gpio_ll_iomux_func_sel(PERIPHS_IO_MUX_MTCK_U, FUNC_MTCK_EMAC_RX_ER);
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[13]);
}
void emac_hal_init(emac_hal_context_t *hal, void *descriptors,
uint8_t **rx_buf, uint8_t **tx_buf)
{
hal->dma_regs = &EMAC_DMA;
hal->mac_regs = &EMAC_MAC;
hal->ext_regs = &EMAC_EXT;
hal->descriptors = descriptors;
hal->rx_buf = rx_buf;
hal->tx_buf = tx_buf;
}
void emac_hal_set_csr_clock_range(emac_hal_context_t *hal, int freq)
{
/* Tell MAC system clock Frequency, which will determine the frequency range of MDC(1MHz~2.5MHz) */
if (freq >= 20 && freq < 35) {
emac_ll_set_csr_clock_division(hal->mac_regs, 2); // CSR clock/16
} else if (freq >= 35 && freq < 60) {
emac_ll_set_csr_clock_division(hal->mac_regs, 3); // CSR clock/26
} else if (freq >= 60 && freq < 100) {
emac_ll_set_csr_clock_division(hal->mac_regs, 0); // CSR clock/42
} else if (freq >= 100 && freq < 150) {
emac_ll_set_csr_clock_division(hal->mac_regs, 1); // CSR clock/62
} else if (freq > 150 && freq < 250) {
emac_ll_set_csr_clock_division(hal->mac_regs, 4); // CSR clock/102
} else {
emac_ll_set_csr_clock_division(hal->mac_regs, 5); // CSR clock/124
}
}
void emac_hal_reset_desc_chain(emac_hal_context_t *hal)
{
/* reset DMA descriptors */
hal->rx_desc = (eth_dma_rx_descriptor_t *)(hal->descriptors);
hal->tx_desc = (eth_dma_tx_descriptor_t *)(hal->descriptors +
sizeof(eth_dma_rx_descriptor_t) * CONFIG_ETH_DMA_RX_BUFFER_NUM);
/* init rx chain */
for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) {
/* Set Own bit of the Rx descriptor Status: DMA */
hal->rx_desc[i].RDES0.Own = 1;
/* Set Buffer1 size and Second Address Chained bit */
hal->rx_desc[i].RDES1.SecondAddressChained = 1;
hal->rx_desc[i].RDES1.ReceiveBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
/* Enable Ethernet DMA Rx Descriptor interrupt */
hal->rx_desc[i].RDES1.DisableInterruptOnComplete = 0;
/* point to the buffer */
hal->rx_desc[i].Buffer1Addr = (uint32_t)(hal->rx_buf[i]);
/* point to next descriptor */
hal->rx_desc[i].Buffer2NextDescAddr = (uint32_t)(hal->rx_desc + i + 1);
}
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
hal->rx_desc[CONFIG_ETH_DMA_RX_BUFFER_NUM - 1].Buffer2NextDescAddr = (uint32_t)(hal->rx_desc);
/* init tx chain */
for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) {
/* Set Second Address Chained bit */
hal->tx_desc[i].TDES0.SecondAddressChained = 1;
hal->tx_desc[i].TDES1.TransmitBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
/* Enable Ethernet DMA Tx Descriptor interrupt */
hal->tx_desc[1].TDES0.InterruptOnComplete = 1;
/* Enable Transmit Timestamp */
hal->tx_desc[i].TDES0.TransmitTimestampEnable = 1;
/* point to the buffer */
hal->tx_desc[i].Buffer1Addr = (uint32_t)(hal->tx_buf[i]);
/* point to next descriptor */
hal->tx_desc[i].Buffer2NextDescAddr = (uint32_t)(hal->tx_desc + i + 1);
}
/* For last descriptor, set next descriptor address register equal to the first descriptor base address */
hal->tx_desc[CONFIG_ETH_DMA_TX_BUFFER_NUM - 1].Buffer2NextDescAddr = (uint32_t)(hal->tx_desc);
/* set base address of the first descriptor */
emac_ll_set_rx_desc_addr(hal->dma_regs, (uint32_t)hal->rx_desc);
emac_ll_set_tx_desc_addr(hal->dma_regs, (uint32_t)hal->tx_desc);
}
void emac_hal_init_mac_default(emac_hal_context_t *hal)
{
/* MACCR Configuration */
/* Enable the watchdog on the receiver, frame longer than 2048 Bytes is not allowed */
emac_ll_watchdog_enable(hal->mac_regs, true);
/* Enable the jabber timer on the transmitter, frame longer than 2048 Bytes is not allowed */
emac_ll_jabber_enable(hal->mac_regs, true);
/* minimum IFG between frames during transmission is 96 bit times */
emac_ll_set_inter_frame_gap(hal->mac_regs, EMAC_LL_INTERFRAME_GAP_96BIT);
/* Enable Carrier Sense During Transmission */
emac_ll_carrier_sense_enable(hal->mac_regs, true);
/* Select speed: port: 10/100 Mbps, here set default 100M, afterwards, will reset by auto-negotiation */
emac_ll_set_port_speed(hal->mac_regs, ETH_SPEED_100M);;
/* Allow the reception of frames when the TX_EN signal is asserted in Half-Duplex mode */
emac_ll_recv_own_enable(hal->mac_regs, true);
/* Disable internal loopback mode */
emac_ll_loopback_enable(hal->mac_regs, false);
/* Select duplex mode: here set default full duplex, afterwards, will reset by auto-negotiation */
emac_ll_set_duplex(hal->mac_regs, ETH_DUPLEX_FULL);
/* Select the checksum mode for received frame payload's TCP/UDP/ICMP headers */
emac_ll_checksum_offload_mode(hal->mac_regs, ETH_CHECKSUM_HW);
/* Enable MAC retry transmission when a colision occurs in half duplex mode */
emac_ll_retry_enable(hal->mac_regs, true);
/* MAC passes all incoming frames to host, without modifying them */
emac_ll_auto_pad_crc_strip_enable(hal->mac_regs, false);
/* Set Back-Off limit time before retry a transmittion after a collision */
emac_ll_set_back_off_limit(hal->mac_regs, EMAC_LL_BACKOFF_LIMIT_10);
/* Disable deferral check, MAC defers until the CRS signal goes inactive */
emac_ll_deferral_check_enable(hal->mac_regs, false);
/* Set preamble length 7 Bytes */
emac_ll_set_preamble_length(hal->mac_regs, EMAC_LL_PREAMBLE_LENGTH_7);
/* MACFFR Configuration */
/* Receiver module passes only those frames to the Application that pass the SA or DA address filter */
emac_ll_receive_all_enable(hal->mac_regs, false);
/* Disable source address filter */
emac_ll_set_src_addr_filter(hal->mac_regs, EMAC_LL_SOURCE_ADDR_FILTER_DISABLE);
emac_ll_sa_inverse_filter_enable(hal->mac_regs, false);
/* MAC blocks all control frames */
emac_ll_set_pass_ctrl_frame_mode(hal->mac_regs, EMAC_LL_CONTROL_FRAME_BLOCKALL);
/* AFM module passes all received broadcast frames and multicast frames */
emac_ll_broadcast_frame_enable(hal->mac_regs, true);
emac_ll_pass_all_multicast_enable(hal->mac_regs, true);
/* Address Check block operates in normal filtering mode for the DA address */
emac_ll_da_inverse_filter_enable(hal->mac_regs, false);
/* Disable Promiscuous Mode */
emac_ll_promiscuous_mode_enable(hal->mac_regs, false);
}
void emac_hal_enable_flow_ctrl(emac_hal_context_t *hal, bool enable)
{
/* MACFCR Configuration */
if (enable) {
/* Pause time */
emac_ll_set_pause_time(hal->mac_regs, EMAC_LL_PAUSE_TIME);
/* Enable generation of Zero-Quanta Pause Control frames */
emac_ll_zero_quanta_pause_enable(hal->mac_regs, true);
/* Threshold of the PAUSE to be checked for automatic retransmission of PAUSE Frame */
emac_ll_set_pause_low_threshold(hal->mac_regs, EMAC_LL_PAUSE_LOW_THRESHOLD_MINUS_28);
/* Don't allow MAC detect Pause frames with MAC address0 unicast address and unique multicast address */
emac_ll_unicast_pause_frame_detect_enable(hal->mac_regs, false);
/* Enable MAC to decode the received Pause frame and disable its transmitter for a specific time */
emac_ll_receive_flow_ctrl_enable(hal->mac_regs, true);
/* Enable MAC to transmit Pause frames in full duplex mode or the MAC back-pressure operation in half duplex mode */
emac_ll_transmit_flow_ctrl_enable(hal->mac_regs, true);
} else {
emac_ll_clear(hal->mac_regs);
}
}
void emac_hal_init_dma_default(emac_hal_context_t *hal)
{
/* DMAOMR Configuration */
/* Enable Dropping of TCP/IP Checksum Error Frames */
emac_ll_drop_tcp_err_frame_enable(hal->dma_regs, true);
/* Enable Receive Store Forward */
emac_ll_recv_store_forward_enable(hal->dma_regs, true);
/* Enable Flushing of Received Frames because of the unavailability of receive descriptors or buffers */
emac_ll_flush_recv_frame_enable(hal->dma_regs, true);
/* Enable Transmit Store Forward */
emac_ll_trans_store_forward_enable(hal->dma_regs, true);
/* Flush Transmit FIFO */
emac_ll_flush_trans_fifo_enable(hal->dma_regs, true);
/* Transmit Threshold Control */
emac_ll_set_transmit_threshold(hal->dma_regs, EMAC_LL_TRANSMIT_THRESHOLD_CONTROL_64);
/* Disable Forward Error Frame */
emac_ll_forward_err_frame_enable(hal->dma_regs, false);
/* Disable forward undersized good frame */
emac_ll_forward_undersized_good_frame_enable(hal->dma_regs, false);
/* Receive Threshold Control */
emac_ll_set_recv_threshold(hal->dma_regs, EMAC_LL_RECEIVE_THRESHOLD_CONTROL_64);
/* Allow the DMA to process a second frame of Transmit data even before obtaining the status for the first frame */
emac_ll_opt_second_frame_enable(hal->dma_regs, true);;
/* DMABMR Configuration */
/* Enable Mixed Burst */
emac_ll_mixed_burst_enable(hal->dma_regs, true);
/* Enable Address Aligned Beates */
emac_ll_addr_align_enable(hal->dma_regs, true);
/* Use Separate PBL */
emac_ll_use_separate_pbl_enable(hal->dma_regs, true);
/* Set Rx/Tx DMA Burst Length */
emac_ll_set_rx_dma_pbl(hal->dma_regs, EMAC_LL_DMA_BURST_LENGTH_32BEAT);
emac_ll_set_prog_burst_len(hal->dma_regs, EMAC_LL_DMA_BURST_LENGTH_32BEAT);
/* Enable Enhanced Descriptor,8 Words(32 Bytes) */
emac_ll_enhance_desc_enable(hal->dma_regs, true);
/* Specifies the number of word to skip between two unchained descriptors (Ring mode) */
emac_ll_set_desc_skip_len(hal->dma_regs, 0);
/* DMA Arbitration Scheme */
emac_ll_fixed_arbitration_enable(hal->dma_regs, false);
/* Set priority ratio in the weighted round-robin arbitration between Rx DMA and Tx DMA */
emac_ll_set_priority_ratio(hal->dma_regs, EMAC_LL_DMA_ARBITRATION_ROUNDROBIN_RXTX_1_1);
}
void emac_hal_set_phy_cmd(emac_hal_context_t *hal, uint32_t phy_addr, uint32_t phy_reg, bool write)
{
/* Write the result value into the MII Address register */
emac_ll_set_phy_addr(hal->mac_regs, phy_addr);
/* Set the PHY register address */
emac_ll_set_phy_reg(hal->mac_regs, phy_reg);
/* Set as write mode */
emac_ll_write_enable(hal->mac_regs, write);
/* Set MII busy bit */
emac_ll_set_busy(hal->mac_regs, true);
}
void emac_hal_set_address(emac_hal_context_t *hal, uint8_t *mac_addr)
{
/* Make sure mac address is unicast type */
if (!(mac_addr[0] & 0x01)) {
emac_ll_set_addr(hal->mac_regs, mac_addr);
}
}
void emac_hal_start(emac_hal_context_t *hal)
{
/* Enable Ethernet MAC and DMA Interrupt */
emac_ll_enable_corresponding_intr(hal->dma_regs, EMAC_LL_CONFIG_ENABLE_INTR_MASK);
/* Enable transmit state machine of the MAC for transmission on the MII */
emac_ll_transmit_enable(hal->mac_regs, true);
/* Enable receive state machine of the MAC for reception from the MII */
emac_ll_receive_enable(hal->mac_regs, true);
/* Flush Transmit FIFO */
emac_ll_flush_trans_fifo_enable(hal->dma_regs, true);
/* Start DMA transmission */
emac_ll_start_stop_dma_transmit(hal->dma_regs, true);
/* Start DMA reception */
emac_ll_start_stop_dma_receive(hal->dma_regs, true);
/* Clear all pending interrupts */
emac_ll_clear_all_pending_intr(hal->dma_regs);
}
void emac_hal_stop(emac_hal_context_t *hal)
{
/* Flush Transmit FIFO */
emac_ll_flush_trans_fifo_enable(hal->dma_regs, true);
/* Stop DMA transmission */
emac_ll_start_stop_dma_transmit(hal->dma_regs, false);
/* Stop DMA reception */
emac_ll_start_stop_dma_receive(hal->dma_regs, false);
/* Disable receive state machine of the MAC for reception from the MII */
emac_ll_transmit_enable(hal->mac_regs, false);
/* Disable transmit state machine of the MAC for transmission on the MII */
emac_ll_receive_enable(hal->mac_regs, false);
/* Disable Ethernet MAC and DMA Interrupt */
emac_ll_disable_all_intr(hal->dma_regs);
}
uint32_t emac_hal_get_tx_desc_owner(emac_hal_context_t *hal)
{
return hal->tx_desc->TDES0.Own;
}
uint32_t emac_hal_transmit_frame(emac_hal_context_t *hal, uint8_t *buf, uint32_t length)
{
/* Get the number of Tx buffers to use for the frame */
uint32_t bufcount = 0;
uint32_t lastlen = length;
uint32_t sentout = 0;
while (lastlen > CONFIG_ETH_DMA_BUFFER_SIZE) {
lastlen -= CONFIG_ETH_DMA_BUFFER_SIZE;
bufcount++;
}
if (lastlen) {
bufcount++;
}
if (bufcount > CONFIG_ETH_DMA_TX_BUFFER_NUM) {
goto err;
}
eth_dma_tx_descriptor_t *desc_iter = hal->tx_desc;
/* A frame is transmitted in multiple descriptor */
for (size_t i = 0; i < bufcount; i++) {
/* Check if the descriptor is owned by the Ethernet DMA (when 1) or CPU (when 0) */
if (desc_iter->TDES0.Own != EMAC_LL_DMADESC_OWNER_CPU) {
goto err;
}
/* Clear FIRST and LAST segment bits */
desc_iter->TDES0.FirstSegment = 0;
desc_iter->TDES0.LastSegment = 0;
desc_iter->TDES0.InterruptOnComplete = 0;
if (i == 0) {
/* Setting the first segment bit */
desc_iter->TDES0.FirstSegment = 1;
}
if (i == (bufcount - 1)) {
/* Setting the last segment bit */
desc_iter->TDES0.LastSegment = 1;
/* Enable transmit interrupt */
desc_iter->TDES0.InterruptOnComplete = 1;
/* Program size */
desc_iter->TDES1.TransmitBuffer1Size = lastlen;
/* copy data from uplayer stack buffer */
memcpy((void *)(desc_iter->Buffer1Addr), buf + i * CONFIG_ETH_DMA_BUFFER_SIZE, lastlen);
sentout += lastlen;
} else {
/* Program size */
desc_iter->TDES1.TransmitBuffer1Size = CONFIG_ETH_DMA_BUFFER_SIZE;
/* copy data from uplayer stack buffer */
memcpy((void *)(desc_iter->Buffer1Addr), buf + i * CONFIG_ETH_DMA_BUFFER_SIZE, CONFIG_ETH_DMA_BUFFER_SIZE);
sentout += CONFIG_ETH_DMA_BUFFER_SIZE;
}
/* Point to next descriptor */
desc_iter = (eth_dma_tx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
for (size_t i = 0; i < bufcount; i++) {
hal->tx_desc->TDES0.Own = EMAC_LL_DMADESC_OWNER_DMA;
hal->tx_desc = (eth_dma_tx_descriptor_t *)(hal->tx_desc->Buffer2NextDescAddr);
}
emac_ll_transmit_poll_demand(hal->dma_regs, 0);
return sentout;
err:
return 0;
}
uint32_t emac_hal_receive_frame(emac_hal_context_t *hal, uint8_t *buf, uint32_t size, uint32_t *frames_remain, uint32_t *free_desc)
{
eth_dma_rx_descriptor_t *desc_iter = NULL;
eth_dma_rx_descriptor_t *first_desc = NULL;
uint32_t used_descs = 0;
uint32_t seg_count = 0;
uint32_t ret_len = 0;
uint32_t copy_len = 0;
uint32_t write_len = 0;
uint32_t frame_count = 0;
first_desc = hal->rx_desc;
desc_iter = hal->rx_desc;
/* Traverse descriptors owned by CPU */
while ((desc_iter->RDES0.Own != EMAC_LL_DMADESC_OWNER_DMA) && (used_descs < CONFIG_ETH_DMA_RX_BUFFER_NUM) && !frame_count) {
used_descs++;
seg_count++;
/* Last segment in frame */
if (desc_iter->RDES0.LastDescriptor) {
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
ret_len = desc_iter->RDES0.FrameLength - ETH_CRC_LENGTH;
/* packets larger than expected will be truncated */
copy_len = ret_len > size ? size : ret_len;
/* update unhandled frame count */
frame_count++;
}
/* First segment in frame */
if (desc_iter->RDES0.FirstDescriptor) {
first_desc = desc_iter;
}
/* point to next descriptor */
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
/* there's at least one frame to process */
if (frame_count) {
/* check how many frames left to handle */
while ((desc_iter->RDES0.Own != EMAC_LL_DMADESC_OWNER_DMA) && (used_descs < CONFIG_ETH_DMA_RX_BUFFER_NUM)) {
used_descs++;
if (desc_iter->RDES0.LastDescriptor) {
frame_count++;
}
/* point to next descriptor */
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
desc_iter = first_desc;
for (size_t i = 0; i < seg_count - 1; i++) {
used_descs--;
write_len = copy_len < CONFIG_ETH_DMA_BUFFER_SIZE ? copy_len : CONFIG_ETH_DMA_BUFFER_SIZE;
/* copy data to buffer */
memcpy(buf, (void *)(desc_iter->Buffer1Addr), write_len);
buf += write_len;
copy_len -= write_len;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
desc_iter->RDES0.Own = EMAC_LL_DMADESC_OWNER_DMA;
desc_iter = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
}
memcpy(buf, (void *)(desc_iter->Buffer1Addr), copy_len);
desc_iter->RDES0.Own = EMAC_LL_DMADESC_OWNER_DMA;
/* update rxdesc */
hal->rx_desc = (eth_dma_rx_descriptor_t *)(desc_iter->Buffer2NextDescAddr);
/* poll rx demand */
emac_ll_receive_poll_demand(hal->dma_regs, 0);
frame_count--;
used_descs--;
}
*frames_remain = frame_count;
*free_desc = CONFIG_ETH_DMA_RX_BUFFER_NUM - used_descs;
return ret_len;
}