esp-idf/components/spi_flash/memspi_host_driver.c

252 wiersze
8.5 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/soc_caps.h"
#include "spi_flash_defs.h"
#include "memspi_host_driver.h"
#include "string.h"
#include "esp_log.h"
#include "cache_utils.h"
#include "esp_flash_partitions.h"
#include "esp_memory_utils.h"
#define SPI_FLASH_HAL_MAX_WRITE_BYTES 64
#define SPI_FLASH_HAL_MAX_READ_BYTES 64
DRAM_ATTR static const spi_flash_host_driver_t esp_flash_default_host = ESP_FLASH_DEFAULT_HOST_DRIVER();
#if SOC_MEMSPI_IS_INDEPENDENT
extern void spi_flash_hal_gpspi_poll_cmd_done(spi_flash_host_inst_t *host);
extern esp_err_t spi_flash_hal_gpspi_device_config(spi_flash_host_inst_t *host);
esp_err_t spi_flash_hal_gpspi_configure_host_io_mode(
spi_flash_host_inst_t *host,
uint32_t command,
uint32_t addr_bitlen,
int dummy_cyclelen_base,
esp_flash_io_mode_t io_mode);
extern esp_err_t spi_flash_hal_gpspi_common_command(spi_flash_host_inst_t *host, spi_flash_trans_t *trans);
extern esp_err_t spi_flash_hal_gpspi_read(spi_flash_host_inst_t *host, void *buffer, uint32_t address, uint32_t read_len);
extern uint32_t spi_flash_hal_gpspi_check_status(spi_flash_host_inst_t *host);
extern bool spi_flash_hal_gpspi_supports_direct_write(spi_flash_host_inst_t *host, const void *p);
extern bool spi_flash_hal_gpspi_supports_direct_read(spi_flash_host_inst_t *host, const void *p);
/** Default configuration for GPSPI */
static const spi_flash_host_driver_t esp_flash_gpspi_host = {
.dev_config = spi_flash_hal_gpspi_device_config,
.common_command = spi_flash_hal_gpspi_common_command,
.read_id = memspi_host_read_id_hs,
.erase_chip = memspi_host_erase_chip,
.erase_sector = memspi_host_erase_sector,
.erase_block = memspi_host_erase_block,
.read_status = memspi_host_read_status_hs,
.set_write_protect = memspi_host_set_write_protect,
.supports_direct_write = spi_flash_hal_gpspi_supports_direct_write,
.supports_direct_read = spi_flash_hal_gpspi_supports_direct_read,
.program_page = memspi_host_program_page,
.write_data_slicer = memspi_host_write_data_slicer,
.read = spi_flash_hal_gpspi_read,
.read_data_slicer = memspi_host_read_data_slicer,
.host_status = spi_flash_hal_gpspi_check_status,
.configure_host_io_mode = spi_flash_hal_gpspi_configure_host_io_mode,
.poll_cmd_done = spi_flash_hal_gpspi_poll_cmd_done,
.flush_cache = NULL,
.check_suspend = NULL,
.resume = spi_flash_hal_resume,
.suspend = spi_flash_hal_suspend,
};
#endif
esp_err_t memspi_host_init_pointers(memspi_host_inst_t *host, const memspi_host_config_t *cfg)
{
if (!esp_ptr_internal(host) && cfg->host_id == SPI1_HOST) {
return ESP_ERR_INVALID_ARG;
}
#if SOC_MEMSPI_IS_INDEPENDENT
if (cfg->host_id == SPI1_HOST)
host->inst.driver = &esp_flash_default_host;
else {
host->inst.driver = &esp_flash_gpspi_host;
}
#else
host->inst.driver = &esp_flash_default_host;
#endif
esp_err_t err = spi_flash_hal_init(host, cfg);
return err;
}
#ifndef CONFIG_SPI_FLASH_ROM_IMPL
static const char TAG[] = "memspi";
esp_err_t memspi_host_read_id_hs(spi_flash_host_inst_t *host, uint32_t *id)
{
uint32_t id_buf = 0;
spi_flash_trans_t t = {
.command = CMD_RDID,
.miso_len = 3,
.miso_data = ((uint8_t*) &id_buf),
};
host->driver->common_command(host, &t);
uint32_t raw_flash_id = id_buf;
ESP_EARLY_LOGV(TAG, "raw_chip_id: %X\n", raw_flash_id);
if (raw_flash_id == 0xFFFFFF || raw_flash_id == 0) {
ESP_EARLY_LOGE(TAG, "no response\n");
return ESP_ERR_FLASH_NO_RESPONSE;
}
// Byte swap the flash id as it's usually written the other way around
uint8_t mfg_id = raw_flash_id & 0xFF;
uint16_t flash_id = (raw_flash_id >> 16) | (raw_flash_id & 0xFF00);
*id = ((uint32_t)mfg_id << 16) | flash_id;
ESP_EARLY_LOGV(TAG, "chip_id: %X\n", *id);
return ESP_OK;
}
esp_err_t memspi_host_read_status_hs(spi_flash_host_inst_t *host, uint8_t *out_sr)
{
//NOTE: we do have a read id function, however it doesn't work in high freq
uint32_t stat_buf = 0;
spi_flash_trans_t t = {
.command = CMD_RDSR,
.miso_data = ((uint8_t*) &stat_buf),
.miso_len = 1
};
esp_err_t err = host->driver->common_command(host, &t);
if (err != ESP_OK) {
return err;
}
*out_sr = stat_buf;
return ESP_OK;
}
esp_err_t memspi_host_flush_cache(spi_flash_host_inst_t *host, uint32_t addr, uint32_t size)
{
if ((void*)((memspi_host_inst_t*)host)->spi == (void*) spi_flash_ll_get_hw(SPI1_HOST)) {
spi_flash_check_and_flush_cache(addr, size);
}
return ESP_OK;
}
void memspi_host_erase_chip(spi_flash_host_inst_t *host)
{
spi_flash_trans_t t = { 0 };
t.command = CMD_CHIP_ERASE;
host->driver->common_command(host, &t);
}
// Only support 24bit address
void memspi_host_erase_sector(spi_flash_host_inst_t *host, uint32_t start_address)
{
assert(start_address < 0x1000000);
spi_flash_trans_t t = {
.command = CMD_SECTOR_ERASE,
.address_bitlen = 24,
.address = start_address
};
host->driver->common_command(host, &t);
}
// Only support 24bit address
void memspi_host_erase_block(spi_flash_host_inst_t *host, uint32_t start_address)
{
assert(start_address < 0x1000000);
spi_flash_trans_t t = {
.command = CMD_LARGE_BLOCK_ERASE,
.address_bitlen = 24,
.address = start_address,
};
host->driver->common_command(host, &t);
}
// Only support 24bit address
void memspi_host_program_page(spi_flash_host_inst_t *host, const void *buffer, uint32_t address, uint32_t length)
{
assert(address + length <= 0x1000000);
spi_flash_trans_t t = {
.command = CMD_PROGRAM_PAGE,
.address_bitlen = 24,
.address = address,
.mosi_len = length,
.mosi_data = buffer
};
host->driver->common_command(host, &t);
}
esp_err_t memspi_host_read(spi_flash_host_inst_t *host, void *buffer, uint32_t address, uint32_t read_len)
{
spi_flash_trans_t t = {
.command = CMD_READ,
.address_bitlen = 24,
.address = address,
.miso_len = read_len,
.miso_data = buffer
};
host->driver->common_command(host, &t);
return ESP_OK;
}
esp_err_t memspi_host_set_write_protect(spi_flash_host_inst_t *host, bool wp)
{
spi_flash_trans_t t = {
.command = wp ? CMD_WRDI : CMD_WREN
};
host->driver->common_command(host, &t);
return ESP_OK;
}
// When encryption is enabled, etc. the data slicer may be complicated
// This is the simple case where the hardware has no other requirements than the size and page boundary
int memspi_host_write_data_slicer(spi_flash_host_inst_t *host, uint32_t address, uint32_t len, uint32_t *align_address, uint32_t page_size)
{
uint32_t slicer_flag = ((spi_flash_hal_context_t*)host)->slicer_flags;
uint32_t align_addr = address;
if (slicer_flag & SPI_FLASH_HOST_CONTEXT_SLICER_FLAG_DTR) {
if (((align_addr % 2) != 0) && ((len % 2) != 0)) {
align_addr -= 1;
len += 1;
} else if (((align_addr % 2) != 0) && ((len % 2) == 0)) {
align_addr -= 1;
len += 2;
} else if (((align_addr % 2) == 0) && ((len % 2) != 0)) {
len += 1;
}
}
uint32_t end_bound = (align_addr/page_size + 1) * page_size;
// Shouldn't program cross the page, or longer than SPI_FLASH_HAL_MAX_WRITE_BYTES
uint32_t max_len = MIN(end_bound - align_addr, SPI_FLASH_HAL_MAX_WRITE_BYTES);
*align_address = align_addr;
return MIN(max_len, len);
}
int memspi_host_read_data_slicer(spi_flash_host_inst_t *host, uint32_t address, uint32_t len, uint32_t *align_address, uint32_t page_size)
{
// Shouldn't read longer than SPI_FLASH_HAL_MAX_READ_BYTES
uint32_t slicer_flag = ((spi_flash_hal_context_t*)host)->slicer_flags;
uint32_t align_addr = address;
if (slicer_flag & SPI_FLASH_HOST_CONTEXT_SLICER_FLAG_DTR) {
if (((align_addr % 2) != 0) && ((len % 2) != 0)) {
align_addr -= 1;
len += 1;
} else if (((align_addr % 2) != 0) && ((len % 2) == 0)) {
align_addr -= 1;
len += 2;
} else if (((align_addr % 2) == 0) && ((len % 2) != 0)) {
len += 1;
}
}
uint32_t max_len = SPI_FLASH_HAL_MAX_READ_BYTES;
*align_address = align_addr;
return MIN(max_len, len);
}
#endif // CONFIG_SPI_FLASH_ROM_IMPL