kopia lustrzana https://github.com/espressif/esp-idf
202 wiersze
7.2 KiB
C
202 wiersze
7.2 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "esp_err.h"
|
|
#include "esp_ipc.h"
|
|
#include "esp_private/esp_ipc_isr.h"
|
|
#include "esp_attr.h"
|
|
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
|
|
#if !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)
|
|
|
|
#if CONFIG_COMPILER_OPTIMIZATION_NONE
|
|
#define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE + 0x100)
|
|
#else
|
|
#define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE)
|
|
#endif //CONFIG_COMPILER_OPTIMIZATION_NONE
|
|
|
|
static DRAM_ATTR StaticSemaphore_t s_ipc_mutex_buffer[portNUM_PROCESSORS];
|
|
static DRAM_ATTR StaticSemaphore_t s_ipc_ack_buffer[portNUM_PROCESSORS];
|
|
|
|
static TaskHandle_t s_ipc_task_handle[portNUM_PROCESSORS];
|
|
static SemaphoreHandle_t s_ipc_mutex[portNUM_PROCESSORS]; // This mutex is used as a global lock for esp_ipc_* APIs
|
|
static SemaphoreHandle_t s_ipc_ack[portNUM_PROCESSORS]; // Semaphore used to acknowledge that task was woken up,
|
|
static volatile esp_ipc_func_t s_func[portNUM_PROCESSORS] = { 0 }; // Function which should be called by high priority task
|
|
static void * volatile s_func_arg[portNUM_PROCESSORS]; // Argument to pass into s_func
|
|
typedef enum {
|
|
IPC_WAIT_NO = 0,
|
|
IPC_WAIT_FOR_START,
|
|
IPC_WAIT_FOR_END,
|
|
} esp_ipc_wait_t;
|
|
|
|
#if CONFIG_APPTRACE_GCOV_ENABLE
|
|
static volatile esp_ipc_func_t s_gcov_func = NULL; // Gcov dump starter function which should be called by high priority task
|
|
static void * volatile s_gcov_func_arg; // Argument to pass into s_gcov_func
|
|
#endif
|
|
|
|
static void IRAM_ATTR ipc_task(void* arg)
|
|
{
|
|
const int cpuid = (int) arg;
|
|
|
|
assert(cpuid == xPortGetCoreID());
|
|
#ifdef CONFIG_ESP_IPC_ISR_ENABLE
|
|
esp_ipc_isr_init();
|
|
#endif
|
|
|
|
while (true) {
|
|
uint32_t ipc_wait;
|
|
xTaskNotifyWait(0, ULONG_MAX, &ipc_wait, portMAX_DELAY);
|
|
|
|
#if CONFIG_APPTRACE_GCOV_ENABLE
|
|
if (s_gcov_func) {
|
|
(*s_gcov_func)(s_gcov_func_arg);
|
|
s_gcov_func = NULL;
|
|
/* we can not interfer with IPC calls so no need for further processing */
|
|
// esp_ipc API and gcov_from_isr APIs can be processed together if they came at the same time
|
|
if (ipc_wait == IPC_WAIT_NO) {
|
|
continue;
|
|
}
|
|
}
|
|
#endif // CONFIG_APPTRACE_GCOV_ENABLE
|
|
|
|
#ifndef CONFIG_FREERTOS_UNICORE
|
|
if (s_func[cpuid]) {
|
|
// we need to cache s_func, s_func_arg and ipc_ack variables locally
|
|
// because they can be changed by a subsequent IPC call (after xTaskNotify(caller_task_handle)).
|
|
esp_ipc_func_t func = s_func[cpuid];
|
|
s_func[cpuid] = NULL;
|
|
void* func_arg = s_func_arg[cpuid];
|
|
SemaphoreHandle_t ipc_ack = s_ipc_ack[cpuid];
|
|
|
|
if (ipc_wait == IPC_WAIT_FOR_START) {
|
|
xSemaphoreGive(ipc_ack);
|
|
(*func)(func_arg);
|
|
} else if (ipc_wait == IPC_WAIT_FOR_END) {
|
|
(*func)(func_arg);
|
|
xSemaphoreGive(ipc_ack);
|
|
} else {
|
|
abort();
|
|
}
|
|
}
|
|
#endif // !CONFIG_FREERTOS_UNICORE
|
|
}
|
|
// TODO: currently this is unreachable code. Introduce esp_ipc_uninit
|
|
// function which will signal to both tasks that they can shut down.
|
|
// Not critical at this point, we don't have a use case for stopping
|
|
// IPC yet.
|
|
// Also need to delete the semaphore here.
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
/*
|
|
* Initialize inter-processor call module. This function is called automatically
|
|
* on CPU start and should not be called from the application.
|
|
*
|
|
* This function start two tasks, one on each CPU. These tasks are started
|
|
* with high priority. These tasks are normally inactive, waiting until one of
|
|
* the esp_ipc_call_* functions to be used. One of these tasks will be
|
|
* woken up to execute the callback provided to esp_ipc_call_nonblocking or
|
|
* esp_ipc_call_blocking.
|
|
*/
|
|
static void esp_ipc_init(void) __attribute__((constructor));
|
|
|
|
static void esp_ipc_init(void)
|
|
{
|
|
char task_name[] = "ipcX"; // up to 10 ipc tasks/cores (0-9)
|
|
|
|
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
|
|
task_name[3] = i + (char)'0';
|
|
s_ipc_mutex[i] = xSemaphoreCreateMutexStatic(&s_ipc_mutex_buffer[i]);
|
|
s_ipc_ack[i] = xSemaphoreCreateBinaryStatic(&s_ipc_ack_buffer[i]);
|
|
portBASE_TYPE res = xTaskCreatePinnedToCore(ipc_task, task_name, IPC_STACK_SIZE, (void*) i,
|
|
configMAX_PRIORITIES - 1, &s_ipc_task_handle[i], i);
|
|
assert(res == pdTRUE);
|
|
(void)res;
|
|
}
|
|
}
|
|
|
|
static esp_err_t esp_ipc_call_and_wait(uint32_t cpu_id, esp_ipc_func_t func, void* arg, esp_ipc_wait_t wait_for)
|
|
{
|
|
if (cpu_id >= portNUM_PROCESSORS) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (s_ipc_task_handle[cpu_id] == NULL) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
|
|
TaskHandle_t task_handler = xTaskGetCurrentTaskHandle();
|
|
UBaseType_t priority_of_current_task = uxTaskPriorityGet(task_handler);
|
|
UBaseType_t priority_of_running_ipc_task = uxTaskPriorityGet(s_ipc_task_handle[cpu_id]);
|
|
if (priority_of_running_ipc_task < priority_of_current_task) {
|
|
vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task);
|
|
}
|
|
|
|
xSemaphoreTake(s_ipc_mutex[cpu_id], portMAX_DELAY);
|
|
vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task);
|
|
#else
|
|
xSemaphoreTake(s_ipc_mutex[0], portMAX_DELAY);
|
|
#endif
|
|
|
|
s_func[cpu_id] = func;
|
|
s_func_arg[cpu_id] = arg;
|
|
xTaskNotify(s_ipc_task_handle[cpu_id], wait_for, eSetValueWithOverwrite);
|
|
xSemaphoreTake(s_ipc_ack[cpu_id], portMAX_DELAY);
|
|
|
|
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
|
|
xSemaphoreGive(s_ipc_mutex[cpu_id]);
|
|
#else
|
|
xSemaphoreGive(s_ipc_mutex[0]);
|
|
#endif
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
|
|
{
|
|
return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_START);
|
|
}
|
|
|
|
esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
|
|
{
|
|
return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_END);
|
|
}
|
|
|
|
// currently this is only called from gcov component
|
|
// the top level guarantees that the next call will be only after the previous one has completed
|
|
#if CONFIG_APPTRACE_GCOV_ENABLE
|
|
esp_err_t esp_ipc_start_gcov_from_isr(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
|
|
{
|
|
if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
// Since it is called from an interrupt, it can not wait for a mutex to be released.
|
|
if (s_gcov_func == NULL) {
|
|
s_gcov_func_arg = arg;
|
|
s_gcov_func = func;
|
|
|
|
// If the target task already has a notification pending then its notification value is not updated (WithoutOverwrite).
|
|
xTaskNotifyFromISR(s_ipc_task_handle[cpu_id], IPC_WAIT_NO, eSetValueWithoutOverwrite, NULL);
|
|
return ESP_OK;
|
|
}
|
|
|
|
// the previous call was not completed
|
|
return ESP_FAIL;
|
|
}
|
|
#endif // CONFIG_APPTRACE_GCOV_ENABLE
|
|
|
|
#endif // !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)
|