kopia lustrzana https://github.com/espressif/esp-idf
304 wiersze
8.4 KiB
C
304 wiersze
8.4 KiB
C
/*
|
|
* ESP32 hardware accelerated SHA1/256/512 implementation
|
|
* based on mbedTLS FIPS-197 compliant version.
|
|
*
|
|
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
|
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*/
|
|
/*
|
|
* The SHA-1 standard was published by NIST in 1993.
|
|
*
|
|
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <sys/lock.h>
|
|
#include <byteswap.h>
|
|
#include <assert.h>
|
|
|
|
#include "hwcrypto/sha.h"
|
|
#include "rom/ets_sys.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/hwcrypto_reg.h"
|
|
|
|
inline static uint32_t SHA_LOAD_REG(esp_sha_type sha_type) {
|
|
return SHA_1_LOAD_REG + sha_type * 0x10;
|
|
}
|
|
|
|
inline static uint32_t SHA_BUSY_REG(esp_sha_type sha_type) {
|
|
return SHA_1_BUSY_REG + sha_type * 0x10;
|
|
}
|
|
|
|
inline static uint32_t SHA_START_REG(esp_sha_type sha_type) {
|
|
return SHA_1_START_REG + sha_type * 0x10;
|
|
}
|
|
|
|
inline static uint32_t SHA_CONTINUE_REG(esp_sha_type sha_type) {
|
|
return SHA_1_CONTINUE_REG + sha_type * 0x10;
|
|
}
|
|
|
|
/* Single lock for SHA engine memory block
|
|
*/
|
|
static _lock_t memory_block_lock;
|
|
|
|
typedef struct {
|
|
_lock_t lock;
|
|
bool in_use;
|
|
} sha_engine_state;
|
|
|
|
/* Pointer to state of each concurrent SHA engine.
|
|
|
|
Indexes:
|
|
0 = SHA1
|
|
1 = SHA2_256
|
|
2 = SHA2_384 or SHA2_512
|
|
*/
|
|
static sha_engine_state engine_states[3];
|
|
|
|
/* Index into the sha_engine_state array */
|
|
inline static size_t sha_engine_index(esp_sha_type type) {
|
|
switch(type) {
|
|
case SHA1:
|
|
return 0;
|
|
case SHA2_256:
|
|
return 1;
|
|
default:
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/* Return digest length (in bytes) for a given SHA type */
|
|
inline static size_t sha_length(esp_sha_type type) {
|
|
switch(type) {
|
|
case SHA1:
|
|
return 20;
|
|
case SHA2_256:
|
|
return 32;
|
|
case SHA2_384:
|
|
return 48;
|
|
case SHA2_512:
|
|
return 64;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Return block size (in bytes) for a given SHA type */
|
|
inline static size_t block_length(esp_sha_type type) {
|
|
switch(type) {
|
|
case SHA1:
|
|
case SHA2_256:
|
|
return 64;
|
|
case SHA2_384:
|
|
case SHA2_512:
|
|
return 128;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void esp_sha_lock_memory_block(void)
|
|
{
|
|
_lock_acquire(&memory_block_lock);
|
|
}
|
|
|
|
void esp_sha_unlock_memory_block(void)
|
|
{
|
|
_lock_release(&memory_block_lock);
|
|
}
|
|
|
|
/* Lock to hold when changing SHA engine state,
|
|
allows checking of sha_engines_all_idle()
|
|
*/
|
|
static _lock_t state_change_lock;
|
|
|
|
inline static bool sha_engines_all_idle() {
|
|
return !engine_states[0].in_use
|
|
&& !engine_states[1].in_use
|
|
&& !engine_states[2].in_use;
|
|
}
|
|
|
|
static void esp_sha_lock_engine_inner(sha_engine_state *engine);
|
|
|
|
bool esp_sha_try_lock_engine(esp_sha_type sha_type)
|
|
{
|
|
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
|
|
if(_lock_try_acquire(&engine->lock) != 0) {
|
|
/* This SHA engine is already in use */
|
|
return false;
|
|
} else {
|
|
esp_sha_lock_engine_inner(engine);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void esp_sha_lock_engine(esp_sha_type sha_type)
|
|
{
|
|
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
|
|
_lock_acquire(&engine->lock);
|
|
esp_sha_lock_engine_inner(engine);
|
|
}
|
|
|
|
static void esp_sha_lock_engine_inner(sha_engine_state *engine)
|
|
{
|
|
_lock_acquire(&state_change_lock);
|
|
|
|
if (sha_engines_all_idle()) {
|
|
/* Enable SHA hardware */
|
|
DPORT_REG_SET_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_SHA);
|
|
/* also clear reset on secure boot, otherwise SHA is held in reset */
|
|
DPORT_REG_CLR_BIT(DPORT_PERI_RST_EN_REG,
|
|
DPORT_PERI_EN_SHA
|
|
| DPORT_PERI_EN_SECUREBOOT);
|
|
DPORT_STALL_OTHER_CPU_START();
|
|
ets_sha_enable();
|
|
DPORT_STALL_OTHER_CPU_END();
|
|
}
|
|
|
|
assert( !engine->in_use && "in_use flag should be cleared" );
|
|
engine->in_use = true;
|
|
|
|
_lock_release(&state_change_lock);
|
|
}
|
|
|
|
|
|
void esp_sha_unlock_engine(esp_sha_type sha_type)
|
|
{
|
|
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
|
|
|
|
_lock_acquire(&state_change_lock);
|
|
|
|
assert( engine->in_use && "in_use flag should be set" );
|
|
engine->in_use = false;
|
|
|
|
if (sha_engines_all_idle()) {
|
|
/* Disable SHA hardware */
|
|
/* Don't assert reset on secure boot, otherwise AES is held in reset */
|
|
DPORT_REG_SET_BIT(DPORT_PERI_RST_EN_REG, DPORT_PERI_EN_SHA);
|
|
DPORT_REG_CLR_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_SHA);
|
|
}
|
|
|
|
_lock_release(&state_change_lock);
|
|
|
|
_lock_release(&engine->lock);
|
|
}
|
|
|
|
void esp_sha_wait_idle(void)
|
|
{
|
|
while(1) {
|
|
if(DPORT_REG_READ(SHA_1_BUSY_REG) == 0
|
|
&& DPORT_REG_READ(SHA_256_BUSY_REG) == 0
|
|
&& DPORT_REG_READ(SHA_384_BUSY_REG) == 0
|
|
&& DPORT_REG_READ(SHA_512_BUSY_REG) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
|
|
{
|
|
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
|
|
assert(engine->in_use && "SHA engine should be locked" );
|
|
|
|
esp_sha_lock_memory_block();
|
|
|
|
esp_sha_wait_idle();
|
|
|
|
DPORT_REG_WRITE(SHA_LOAD_REG(sha_type), 1);
|
|
while(DPORT_REG_READ(SHA_BUSY_REG(sha_type)) == 1) { }
|
|
uint32_t *digest_state_words = (uint32_t *)digest_state;
|
|
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
|
|
if(sha_type == SHA2_384 || sha_type == SHA2_512) {
|
|
/* for these ciphers using 64-bit states, swap each pair of words */
|
|
DPORT_INTERRUPT_DISABLE(); // Disable interrupt only on current CPU.
|
|
for(int i = 0; i < sha_length(sha_type)/4; i += 2) {
|
|
digest_state_words[i+1] = DPORT_SEQUENCE_REG_READ((uint32_t)®_addr_buf[i]);
|
|
digest_state_words[i] = DPORT_SEQUENCE_REG_READ((uint32_t)®_addr_buf[i+1]);
|
|
}
|
|
DPORT_INTERRUPT_RESTORE(); // restore the previous interrupt level
|
|
} else {
|
|
esp_dport_access_read_buffer(digest_state_words, (uint32_t)®_addr_buf[0], sha_length(sha_type)/4);
|
|
}
|
|
esp_sha_unlock_memory_block();
|
|
}
|
|
|
|
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block)
|
|
{
|
|
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
|
|
assert(engine->in_use && "SHA engine should be locked" );
|
|
|
|
esp_sha_lock_memory_block();
|
|
|
|
esp_sha_wait_idle();
|
|
|
|
/* Fill the data block */
|
|
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
|
|
uint32_t *data_words = (uint32_t *)data_block;
|
|
for (int i = 0; i < block_length(sha_type) / 4; i++) {
|
|
reg_addr_buf[i] = __bswap_32(data_words[i]);
|
|
}
|
|
asm volatile ("memw");
|
|
|
|
if(is_first_block) {
|
|
DPORT_REG_WRITE(SHA_START_REG(sha_type), 1);
|
|
} else {
|
|
DPORT_REG_WRITE(SHA_CONTINUE_REG(sha_type), 1);
|
|
}
|
|
|
|
esp_sha_unlock_memory_block();
|
|
|
|
/* Note: deliberately not waiting for this operation to complete,
|
|
as a performance tweak - delay waiting until the next time we need the SHA
|
|
unit, instead.
|
|
*/
|
|
}
|
|
|
|
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
|
|
{
|
|
size_t block_len = block_length(sha_type);
|
|
|
|
esp_sha_lock_engine(sha_type);
|
|
|
|
SHA_CTX ctx;
|
|
ets_sha_init(&ctx);
|
|
while(ilen > 0) {
|
|
size_t chunk_len = (ilen > block_len) ? block_len : ilen;
|
|
esp_sha_lock_memory_block();
|
|
esp_sha_wait_idle();
|
|
DPORT_STALL_OTHER_CPU_START();
|
|
{
|
|
// This SHA ROM function reads DPORT regs
|
|
ets_sha_update(&ctx, sha_type, input, chunk_len * 8);
|
|
}
|
|
DPORT_STALL_OTHER_CPU_END();
|
|
esp_sha_unlock_memory_block();
|
|
input += chunk_len;
|
|
ilen -= chunk_len;
|
|
}
|
|
esp_sha_lock_memory_block();
|
|
esp_sha_wait_idle();
|
|
DPORT_STALL_OTHER_CPU_START();
|
|
{
|
|
ets_sha_finish(&ctx, sha_type, output);
|
|
}
|
|
DPORT_STALL_OTHER_CPU_END();
|
|
esp_sha_unlock_memory_block();
|
|
|
|
esp_sha_unlock_engine(sha_type);
|
|
}
|