esp-idf/components/efuse/esp32s3/esp_efuse_rtc_calib.c

115 wiersze
4.3 KiB
C

/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <esp_bit_defs.h>
#include "esp_err.h"
#include "esp_log.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
//Don't introduce new dependency of ADC, keep these macro same as ADC related definations
#define ADC_ATTEN_MAX 4
#define ADC_NUM_MAX 2
#define ADC_NUM_1 0
#define ADC_NUM_2 1
int esp_efuse_rtc_calib_get_ver(void)
{
uint32_t blk_ver_major = 0;
ESP_ERROR_CHECK(esp_efuse_read_field_blob(ESP_EFUSE_BLK_VERSION_MAJOR, &blk_ver_major, ESP_EFUSE_BLK_VERSION_MAJOR[0]->bit_count)); // IDF-5366
uint32_t cali_version_v1 = (blk_ver_major == 1) ? 1 : 0;
if (!cali_version_v1) {
ESP_LOGW("eFuse", "calibration efuse version does not match, set default version: %d", 0);
}
return cali_version_v1;
}
uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten)
{
assert(version == 1);
assert(atten < 4);
assert(adc_unit < ADC_NUM_MAX);
const esp_efuse_desc_t **desc[8] = {ESP_EFUSE_ADC1_INIT_CODE_ATTEN0, ESP_EFUSE_ADC1_INIT_CODE_ATTEN1, ESP_EFUSE_ADC1_INIT_CODE_ATTEN2, ESP_EFUSE_ADC1_INIT_CODE_ATTEN3,
ESP_EFUSE_ADC2_INIT_CODE_ATTEN0, ESP_EFUSE_ADC2_INIT_CODE_ATTEN1, ESP_EFUSE_ADC2_INIT_CODE_ATTEN2, ESP_EFUSE_ADC2_INIT_CODE_ATTEN3};
int efuse_icode_bits = 0;
uint32_t adc_icode[4] = {};
uint32_t adc_icode_diff[4] = {};
uint8_t desc_index = (adc_unit == ADC_NUM_1) ? 0 : 4;
for (int diff_index = 0; diff_index < 4; diff_index++) {
efuse_icode_bits = esp_efuse_get_field_size(desc[desc_index]);
ESP_ERROR_CHECK(esp_efuse_read_field_blob(desc[desc_index], &adc_icode_diff[diff_index], efuse_icode_bits));
desc_index++;
}
//Version 1 logic for calculating ADC ICode based on EFUSE burnt value
if (adc_unit == ADC_NUM_1) {
adc_icode[0] = adc_icode_diff[0] + 1850;
adc_icode[1] = adc_icode_diff[1] + adc_icode[0] + 90;
adc_icode[2] = adc_icode_diff[2] + adc_icode[1];
adc_icode[3] = adc_icode_diff[3] + adc_icode[2] + 70;
} else {
adc_icode[0] = adc_icode_diff[0] + 2020;
adc_icode[1] = adc_icode_diff[1] + adc_icode[0];
adc_icode[2] = adc_icode_diff[2] + adc_icode[1];
adc_icode[3] = adc_icode_diff[3] + adc_icode[2];
}
return adc_icode[atten];
}
esp_err_t esp_efuse_rtc_calib_get_cal_voltage(int version, uint32_t adc_unit, int atten, uint32_t *out_digi, uint32_t *out_vol_mv)
{
assert(version == 1);
assert(atten < 4);
assert(adc_unit < ADC_NUM_MAX);
int efuse_vol_bits = 0;
uint32_t adc_vol_diff[8] = {};
uint32_t adc1_vol[4] = {};
uint32_t adc2_vol[4] = {};
const esp_efuse_desc_t **desc[8] = {ESP_EFUSE_ADC1_CAL_VOL_ATTEN0, ESP_EFUSE_ADC1_CAL_VOL_ATTEN1, ESP_EFUSE_ADC1_CAL_VOL_ATTEN2, ESP_EFUSE_ADC1_CAL_VOL_ATTEN3,
ESP_EFUSE_ADC2_CAL_VOL_ATTEN0, ESP_EFUSE_ADC2_CAL_VOL_ATTEN1, ESP_EFUSE_ADC2_CAL_VOL_ATTEN2, ESP_EFUSE_ADC2_CAL_VOL_ATTEN3};
for (int i = 0; i < 8; i++) {
efuse_vol_bits = esp_efuse_get_field_size(desc[i]);
ESP_ERROR_CHECK(esp_efuse_read_field_blob(desc[i], &adc_vol_diff[i], efuse_vol_bits));
}
adc1_vol[3] = adc_vol_diff[3] + 900;
adc1_vol[2] = adc_vol_diff[2] + adc1_vol[3] + 800;
adc1_vol[1] = adc_vol_diff[1] + adc1_vol[2] + 700;
adc1_vol[0] = adc_vol_diff[0] + adc1_vol[1] + 800;
adc2_vol[3] = adc1_vol[3] - adc_vol_diff[7] + 15;
adc2_vol[2] = adc1_vol[2] - adc_vol_diff[6] + 20;
adc2_vol[1] = adc1_vol[1] - adc_vol_diff[5] + 10;
adc2_vol[0] = adc1_vol[0] - adc_vol_diff[4] + 40;
*out_digi = (adc_unit == ADC_NUM_1) ? adc1_vol[atten] : adc2_vol[atten];
*out_vol_mv = 850;
return ESP_OK;
}
float esp_efuse_rtc_calib_get_cal_temp(int version)
{
assert(version == 1);
const esp_efuse_desc_t** cal_temp_efuse;
cal_temp_efuse = ESP_EFUSE_TEMP_CALIB;
int cal_temp_size = esp_efuse_get_field_size(cal_temp_efuse);
assert(cal_temp_size == 9);
uint32_t cal_temp = 0;
esp_err_t err = esp_efuse_read_field_blob(cal_temp_efuse, &cal_temp, cal_temp_size);
assert(err == ESP_OK);
(void)err;
// BIT(8) stands for sign: 1: negtive, 0: positive
return ((cal_temp & BIT(8)) != 0)? -(uint8_t)cal_temp: (uint8_t)cal_temp;
}