kopia lustrzana https://github.com/espressif/esp-idf
300 wiersze
23 KiB
C
300 wiersze
23 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#ifndef _SOC_LEDC_STRUCT_H_
|
|
#define _SOC_LEDC_STRUCT_H_
|
|
typedef volatile struct {
|
|
struct{
|
|
union {
|
|
struct {
|
|
uint32_t timer_sel: 2; /*There are four high speed timers the two bits are used to select one of them for high speed channel. 2'b00: seletc hstimer0. 2'b01: select hstimer1. 2'b10: select hstimer2. 2'b11: select hstimer3.*/
|
|
uint32_t sig_out_en: 1; /*This is the output enable control bit for high speed channel*/
|
|
uint32_t idle_lv: 1; /*This bit is used to control the output value when high speed channel is off.*/
|
|
uint32_t reserved4: 27;
|
|
uint32_t clk_en: 1; /*This bit is clock gating control signal. when software configure LED_PWM internal registers it controls the register clock.*/
|
|
};
|
|
uint32_t val;
|
|
} conf0;
|
|
union {
|
|
struct {
|
|
uint32_t hpoint: 20; /*The output value changes to high when htimerx(x=[0 3]) selected by high speed channel has reached reg_hpoint_hsch0[19:0]*/
|
|
uint32_t reserved20: 12;
|
|
};
|
|
uint32_t val;
|
|
} hpoint;
|
|
union {
|
|
struct {
|
|
uint32_t duty: 25; /*The register is used to control output duty. When hstimerx(x=[0 3]) chosen by high speed channel has reached reg_lpoint_hsch0 the output signal changes to low. reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4]) (1) reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
|
|
uint32_t reserved25: 7;
|
|
};
|
|
uint32_t val;
|
|
} duty;
|
|
union {
|
|
struct {
|
|
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for high speed channel.*/
|
|
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_hsch0 cycles for high speed channel.*/
|
|
uint32_t duty_num: 10; /*This register is used to control the number of increased or decreased times for high speed channel.*/
|
|
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel.*/
|
|
uint32_t duty_start: 1; /*When reg_duty_num_hsch0 reg_duty_cycle_hsch0 and reg_duty_scale_hsch0 has been configured. these register won't take effect until set reg_duty_start_hsch0. this bit is automatically cleared by hardware.*/
|
|
};
|
|
uint32_t val;
|
|
} conf1;
|
|
union {
|
|
struct {
|
|
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for high speed channel.*/
|
|
uint32_t reserved25: 7;
|
|
};
|
|
uint32_t val;
|
|
} duty_rd;
|
|
} high_speed_channel[8];
|
|
struct{
|
|
union {
|
|
struct {
|
|
uint32_t timer_sel: 2; /*There are four low speed timers the two bits are used to select one of them for low speed channel. 2'b00: seletc lstimer0. 2'b01: select lstimer1. 2'b10: select lstimer2. 2'b11: select lstimer3.*/
|
|
uint32_t sig_out_en: 1; /*This is the output enable control bit for low speed channel.*/
|
|
uint32_t idle_lv: 1; /*This bit is used to control the output value when low speed channel is off.*/
|
|
uint32_t para_up: 1; /*This bit is used to update register LEDC_LSCH0_HPOINT and LEDC_LSCH0_DUTY for low speed channel.*/
|
|
uint32_t reserved5: 27;
|
|
};
|
|
uint32_t val;
|
|
} conf0;
|
|
union {
|
|
struct {
|
|
uint32_t hpoint: 20; /*The output value changes to high when lstimerx(x=[0 3]) selected by low speed channel has reached reg_hpoint_lsch0[19:0]*/
|
|
uint32_t reserved20: 12;
|
|
};
|
|
uint32_t val;
|
|
} hpoint;
|
|
union {
|
|
struct {
|
|
uint32_t duty: 25; /*The register is used to control output duty. When lstimerx(x=[0 3]) choosed by low speed channel has reached reg_lpoint_lsch0 the output signal changes to low. reg_lpoint_lsch0=(reg_hpoint_lsch0[19:0]+reg_duty_lsch0[24:4]) (1) reg_lpoint_lsch0=(reg_hpoint_lsch0[19:0]+reg_duty_lsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
|
|
uint32_t reserved25: 7;
|
|
};
|
|
uint32_t val;
|
|
} duty;
|
|
union {
|
|
struct {
|
|
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for low speed channel.*/
|
|
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_lsch0 cycles for low speed channel.*/
|
|
uint32_t duty_num: 10; /*This register is used to control the num of increased or decreased times for low speed channel6.*/
|
|
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for low speed channel6.*/
|
|
uint32_t duty_start: 1; /*When reg_duty_num_hsch1 reg_duty_cycle_hsch1 and reg_duty_scale_hsch1 has been configured. these register won't take effect until set reg_duty_start_hsch1. this bit is automatically cleared by hardware.*/
|
|
};
|
|
uint32_t val;
|
|
} conf1;
|
|
union {
|
|
struct {
|
|
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for low speed channel.*/
|
|
uint32_t reserved25: 7;
|
|
};
|
|
uint32_t val;
|
|
} duty_r;
|
|
} low_speed_channel[8];
|
|
struct{
|
|
union {
|
|
struct {
|
|
uint32_t timer_lim: 5; /*This register controls the range of the counter in high speed timer. the counter range is [0 2**reg_hstimer0_lim] the max bit width for counter is 20.*/
|
|
uint32_t div_num: 18; /*This register is used to configure parameter for divider in high speed timer the least significant eight bits represent the decimal part.*/
|
|
uint32_t pause: 1; /*This bit is used to pause the counter in high speed timer*/
|
|
uint32_t rst: 1; /*This bit is used to reset high speed timer the counter will be 0 after reset.*/
|
|
uint32_t tick_sel: 1; /*This bit is used to choose apb_clk or ref_tick for high speed timer. 1'b1:apb_clk 0:ref_tick*/
|
|
uint32_t reserved26: 6;
|
|
};
|
|
uint32_t val;
|
|
} conf;
|
|
union {
|
|
struct {
|
|
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in high speed timer*/
|
|
uint32_t reserved20: 12;
|
|
};
|
|
uint32_t val;
|
|
} value;
|
|
} high_speed_timer[4];
|
|
struct{
|
|
union {
|
|
struct {
|
|
uint32_t timer_lim: 5; /*This register controls the range of the counter in low speed timer. the counter range is [0 2**reg_lstimer0_lim] the max bit width for counter is 20.*/
|
|
uint32_t div_num: 18; /*This register is used to configure parameter for divider in low speed timer the least significant eight bits represent the decimal part.*/
|
|
uint32_t pause: 1; /*This bit is used to pause the counter in low speed timer.*/
|
|
uint32_t rst: 1; /*This bit is used to reset low speed timer the counter will be 0 after reset.*/
|
|
uint32_t tick_sel: 1; /*This bit is used to choose slow_clk or ref_tick for low speed timer. 1'b1:slow_clk 0:ref_tick*/
|
|
uint32_t param_update: 1; /*Set this bit to update reg_div_num_lstime0 and reg_lstimer0_lim.*/
|
|
uint32_t reserved27: 5;
|
|
};
|
|
uint32_t val;
|
|
} conf;
|
|
union {
|
|
struct {
|
|
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in low speed timer.*/
|
|
uint32_t reserved20: 12;
|
|
};
|
|
uint32_t val;
|
|
} value;
|
|
} low_speed_timer[4];
|
|
union {
|
|
struct {
|
|
uint32_t hstimer0_ovf: 1; /*The interrupt raw bit for high speed channel0 counter overflow.*/
|
|
uint32_t hstimer1_ovf: 1; /*The interrupt raw bit for high speed channel1 counter overflow.*/
|
|
uint32_t hstimer2_ovf: 1; /*The interrupt raw bit for high speed channel2 counter overflow.*/
|
|
uint32_t hstimer3_ovf: 1; /*The interrupt raw bit for high speed channel3 counter overflow.*/
|
|
uint32_t lstimer0_ovf: 1; /*The interrupt raw bit for low speed channel0 counter overflow.*/
|
|
uint32_t lstimer1_ovf: 1; /*The interrupt raw bit for low speed channel1 counter overflow.*/
|
|
uint32_t lstimer2_ovf: 1; /*The interrupt raw bit for low speed channel2 counter overflow.*/
|
|
uint32_t lstimer3_ovf: 1; /*The interrupt raw bit for low speed channel3 counter overflow.*/
|
|
uint32_t duty_chng_end_hsch0: 1; /*The interrupt raw bit for high speed channel 0 duty change done.*/
|
|
uint32_t duty_chng_end_hsch1: 1; /*The interrupt raw bit for high speed channel 1 duty change done.*/
|
|
uint32_t duty_chng_end_hsch2: 1; /*The interrupt raw bit for high speed channel 2 duty change done.*/
|
|
uint32_t duty_chng_end_hsch3: 1; /*The interrupt raw bit for high speed channel 3 duty change done.*/
|
|
uint32_t duty_chng_end_hsch4: 1; /*The interrupt raw bit for high speed channel 4 duty change done.*/
|
|
uint32_t duty_chng_end_hsch5: 1; /*The interrupt raw bit for high speed channel 5 duty change done.*/
|
|
uint32_t duty_chng_end_hsch6: 1; /*The interrupt raw bit for high speed channel 6 duty change done.*/
|
|
uint32_t duty_chng_end_hsch7: 1; /*The interrupt raw bit for high speed channel 7 duty change done.*/
|
|
uint32_t duty_chng_end_lsch0: 1; /*The interrupt raw bit for low speed channel 0 duty change done.*/
|
|
uint32_t duty_chng_end_lsch1: 1; /*The interrupt raw bit for low speed channel 1 duty change done.*/
|
|
uint32_t duty_chng_end_lsch2: 1; /*The interrupt raw bit for low speed channel 2 duty change done.*/
|
|
uint32_t duty_chng_end_lsch3: 1; /*The interrupt raw bit for low speed channel 3 duty change done.*/
|
|
uint32_t duty_chng_end_lsch4: 1; /*The interrupt raw bit for low speed channel 4 duty change done.*/
|
|
uint32_t duty_chng_end_lsch5: 1; /*The interrupt raw bit for low speed channel 5 duty change done.*/
|
|
uint32_t duty_chng_end_lsch6: 1; /*The interrupt raw bit for low speed channel 6 duty change done.*/
|
|
uint32_t duty_chng_end_lsch7: 1; /*The interrupt raw bit for low speed channel 7 duty change done.*/
|
|
uint32_t reserved24: 8;
|
|
};
|
|
uint32_t val;
|
|
} int_raw;
|
|
union {
|
|
struct {
|
|
uint32_t hstimer0_ovf: 1; /*The interrupt status bit for high speed channel0 counter overflow event.*/
|
|
uint32_t hstimer1_ovf: 1; /*The interrupt status bit for high speed channel1 counter overflow event.*/
|
|
uint32_t hstimer2_ovf: 1; /*The interrupt status bit for high speed channel2 counter overflow event.*/
|
|
uint32_t hstimer3_ovf: 1; /*The interrupt status bit for high speed channel3 counter overflow event.*/
|
|
uint32_t lstimer0_ovf: 1; /*The interrupt status bit for low speed channel0 counter overflow event.*/
|
|
uint32_t lstimer1_ovf: 1; /*The interrupt status bit for low speed channel1 counter overflow event.*/
|
|
uint32_t lstimer2_ovf: 1; /*The interrupt status bit for low speed channel2 counter overflow event.*/
|
|
uint32_t lstimer3_ovf: 1; /*The interrupt status bit for low speed channel3 counter overflow event.*/
|
|
uint32_t duty_chng_end_hsch1: 1; /*The interrupt status bit for high speed channel 1 duty change done event.*/
|
|
uint32_t duty_chng_end_hsch2: 1; /*The interrupt status bit for high speed channel 2 duty change done event.*/
|
|
uint32_t duty_chng_end_hsch3: 1; /*The interrupt status bit for high speed channel 3 duty change done event.*/
|
|
uint32_t duty_chng_end_hsch4: 1; /*The interrupt status bit for high speed channel 4 duty change done event.*/
|
|
uint32_t duty_chng_end_hsch5: 1; /*The interrupt status bit for high speed channel 5 duty change done event.*/
|
|
uint32_t duty_chng_end_hsch6: 1; /*The interrupt status bit for high speed channel 6 duty change done event.*/
|
|
uint32_t duty_chng_end_hsch7: 1; /*The interrupt status bit for high speed channel 7 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch0: 1; /*The interrupt status bit for low speed channel 0 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch1: 1; /*The interrupt status bit for low speed channel 1 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch2: 1; /*The interrupt status bit for low speed channel 2 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch3: 1; /*The interrupt status bit for low speed channel 3 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch4: 1; /*The interrupt status bit for low speed channel 4 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch5: 1; /*The interrupt status bit for low speed channel 5 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch6: 1; /*The interrupt status bit for low speed channel 6 duty change done event.*/
|
|
uint32_t duty_chng_end_lsch7: 1; /*The interrupt status bit for low speed channel 7 duty change done event*/
|
|
uint32_t reserved24: 8;
|
|
};
|
|
uint32_t val;
|
|
} int_st;
|
|
union {
|
|
struct {
|
|
uint32_t hstimer0_ovf: 1; /*The interrupt enable bit for high speed channel0 counter overflow interrupt.*/
|
|
uint32_t hstimer1_ovf: 1; /*The interrupt enable bit for high speed channel1 counter overflow interrupt.*/
|
|
uint32_t hstimer2_ovf: 1; /*The interrupt enable bit for high speed channel2 counter overflow interrupt.*/
|
|
uint32_t hstimer3_ovf: 1; /*The interrupt enable bit for high speed channel3 counter overflow interrupt.*/
|
|
uint32_t lstimer0_ovf: 1; /*The interrupt enable bit for low speed channel0 counter overflow interrupt.*/
|
|
uint32_t lstimer1_ovf: 1; /*The interrupt enable bit for low speed channel1 counter overflow interrupt.*/
|
|
uint32_t lstimer2_ovf: 1; /*The interrupt enable bit for low speed channel2 counter overflow interrupt.*/
|
|
uint32_t lstimer3_ovf: 1; /*The interrupt enable bit for low speed channel3 counter overflow interrupt.*/
|
|
uint32_t duty_chng_end_hsch0: 1; /*The interrupt enable bit for high speed channel 0 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch1: 1; /*The interrupt enable bit for high speed channel 1 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch2: 1; /*The interrupt enable bit for high speed channel 2 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch3: 1; /*The interrupt enable bit for high speed channel 3 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch4: 1; /*The interrupt enable bit for high speed channel 4 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch5: 1; /*The interrupt enable bit for high speed channel 5 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch6: 1; /*The interrupt enable bit for high speed channel 6 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch7: 1; /*The interrupt enable bit for high speed channel 7 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch0: 1; /*The interrupt enable bit for low speed channel 0 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch1: 1; /*The interrupt enable bit for low speed channel 1 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch2: 1; /*The interrupt enable bit for low speed channel 2 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch3: 1; /*The interrupt enable bit for low speed channel 3 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch4: 1; /*The interrupt enable bit for low speed channel 4 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch5: 1; /*The interrupt enable bit for low speed channel 5 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch6: 1; /*The interrupt enable bit for low speed channel 6 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch7: 1; /*The interrupt enable bit for low speed channel 7 duty change done interrupt.*/
|
|
uint32_t reserved24: 8;
|
|
};
|
|
uint32_t val;
|
|
} int_ena;
|
|
union {
|
|
struct {
|
|
uint32_t hstimer0_ovf: 1; /*Set this bit to clear high speed channel0 counter overflow interrupt.*/
|
|
uint32_t hstimer1_ovf: 1; /*Set this bit to clear high speed channel1 counter overflow interrupt.*/
|
|
uint32_t hstimer2_ovf: 1; /*Set this bit to clear high speed channel2 counter overflow interrupt.*/
|
|
uint32_t hstimer3_ovf: 1; /*Set this bit to clear high speed channel3 counter overflow interrupt.*/
|
|
uint32_t lstimer0_ovf: 1; /*Set this bit to clear low speed channel0 counter overflow interrupt.*/
|
|
uint32_t lstimer1_ovf: 1; /*Set this bit to clear low speed channel1 counter overflow interrupt.*/
|
|
uint32_t lstimer2_ovf: 1; /*Set this bit to clear low speed channel2 counter overflow interrupt.*/
|
|
uint32_t lstimer3_ovf: 1; /*Set this bit to clear low speed channel3 counter overflow interrupt.*/
|
|
uint32_t duty_chng_end_hsch0: 1; /*Set this bit to clear high speed channel 0 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch1: 1; /*Set this bit to clear high speed channel 1 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch2: 1; /*Set this bit to clear high speed channel 2 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch3: 1; /*Set this bit to clear high speed channel 3 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch4: 1; /*Set this bit to clear high speed channel 4 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch5: 1; /*Set this bit to clear high speed channel 5 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch6: 1; /*Set this bit to clear high speed channel 6 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_hsch7: 1; /*Set this bit to clear high speed channel 7 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch0: 1; /*Set this bit to clear low speed channel 0 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch1: 1; /*Set this bit to clear low speed channel 1 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch2: 1; /*Set this bit to clear low speed channel 2 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch3: 1; /*Set this bit to clear low speed channel 3 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch4: 1; /*Set this bit to clear low speed channel 4 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch5: 1; /*Set this bit to clear low speed channel 5 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch6: 1; /*Set this bit to clear low speed channel 6 duty change done interrupt.*/
|
|
uint32_t duty_chng_end_lsch7: 1; /*Set this bit to clear low speed channel 7 duty change done interrupt.*/
|
|
uint32_t reserved24: 8;
|
|
};
|
|
uint32_t val;
|
|
} int_clr;
|
|
union {
|
|
struct {
|
|
uint32_t apb_clk_sel: 1; /*This bit is used to set the frequency of slow_clk. 1'b1:80mhz 1'b0:8mhz*/
|
|
uint32_t reserved1: 31;
|
|
};
|
|
uint32_t val;
|
|
} conf;
|
|
uint32_t reserved_194;
|
|
uint32_t reserved_198;
|
|
uint32_t reserved_19c;
|
|
uint32_t reserved_1a0;
|
|
uint32_t reserved_1a4;
|
|
uint32_t reserved_1a8;
|
|
uint32_t reserved_1ac;
|
|
uint32_t reserved_1b0;
|
|
uint32_t reserved_1b4;
|
|
uint32_t reserved_1b8;
|
|
uint32_t reserved_1bc;
|
|
uint32_t reserved_1c0;
|
|
uint32_t reserved_1c4;
|
|
uint32_t reserved_1c8;
|
|
uint32_t reserved_1cc;
|
|
uint32_t reserved_1d0;
|
|
uint32_t reserved_1d4;
|
|
uint32_t reserved_1d8;
|
|
uint32_t reserved_1dc;
|
|
uint32_t reserved_1e0;
|
|
uint32_t reserved_1e4;
|
|
uint32_t reserved_1e8;
|
|
uint32_t reserved_1ec;
|
|
uint32_t reserved_1f0;
|
|
uint32_t reserved_1f4;
|
|
uint32_t reserved_1f8;
|
|
uint32_t date; /*This register represents the version .*/
|
|
} ledc_dev_t;
|
|
extern ledc_dev_t LEDC;
|
|
#endif /* _SOC_LEDC_STRUCT_H_ */
|