esp-idf/components/nvs_flash/test_nvs_host/test_nvs.cpp

3534 wiersze
125 KiB
C++

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "catch.hpp"
#include "nvs.hpp"
#include "nvs_test_api.h"
#include "sdkconfig.h"
#include "spi_flash_emulation.h"
#include "nvs_partition_manager.hpp"
#include "nvs_partition.hpp"
#include "mbedtls/aes.h"
#include <sstream>
#include <iostream>
#include <fstream>
#include <dirent.h>
#include <unistd.h>
#include <sys/wait.h>
#include <string.h>
#include <string>
#include "test_fixtures.hpp"
#define TEST_ESP_ERR(rc, res) CHECK((rc) == (res))
#define TEST_ESP_OK(rc) CHECK((rc) == ESP_OK)
using namespace std;
using namespace nvs;
stringstream s_perf;
void dumpBytes(const uint8_t* data, size_t count)
{
for (uint32_t i = 0; i < count; ++i) {
if (i % 32 == 0) {
printf("%08x ", i);
}
printf("%02x ", data[i]);
if ((i + 1) % 32 == 0) {
printf("\n");
}
}
}
TEST_CASE("crc32 behaves as expected", "[nvs]")
{
Item item1;
item1.datatype = ItemType::I32;
item1.nsIndex = 1;
item1.crc32 = 0;
item1.chunkIndex = 0xff;
fill_n(item1.key, sizeof(item1.key), 0xbb);
fill_n(item1.data, sizeof(item1.data), 0xaa);
auto crc32_1 = item1.calculateCrc32();
Item item2 = item1;
item2.crc32 = crc32_1;
CHECK(crc32_1 == item2.calculateCrc32());
item2 = item1;
item2.nsIndex = 2;
CHECK(crc32_1 != item2.calculateCrc32());
item2 = item1;
item2.datatype = ItemType::U32;
CHECK(crc32_1 != item2.calculateCrc32());
item2 = item1;
strncpy(item2.key, "foo", Item::MAX_KEY_LENGTH);
CHECK(crc32_1 != item2.calculateCrc32());
}
TEST_CASE("Page starting with empty flash is in uninitialized state", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.state() == Page::PageState::INVALID);
CHECK(page.load(&f.part, 0) == ESP_OK);
CHECK(page.state() == Page::PageState::UNINITIALIZED);
}
TEST_CASE("Page can distinguish namespaces", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
int32_t val1 = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val1, sizeof(val1)) == ESP_OK);
int32_t val2 = 0x23456789;
CHECK(page.writeItem(2, ItemType::I32, "intval1", &val2, sizeof(val2)) == ESP_OK);
int32_t readVal;
CHECK(page.readItem(2, ItemType::I32, "intval1", &readVal, sizeof(readVal)) == ESP_OK);
CHECK(readVal == val2);
}
TEST_CASE("Page reading with different type causes type mismatch error", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
int32_t val = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
CHECK(page.readItem(1, ItemType::U32, "intval1", &val, sizeof(val)) == ESP_ERR_NVS_TYPE_MISMATCH);
}
TEST_CASE("Page when erased, it's state becomes UNITIALIZED", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
int32_t val = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
CHECK(page.erase() == ESP_OK);
CHECK(page.state() == Page::PageState::UNINITIALIZED);
}
TEST_CASE("Page when writing and erasing, used/erased counts are updated correctly", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
CHECK(page.getUsedEntryCount() == 0);
CHECK(page.getErasedEntryCount() == 0);
uint32_t foo1 = 0;
CHECK(page.writeItem(1, "foo1", foo1) == ESP_OK);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.writeItem(2, "foo1", foo1) == ESP_OK);
CHECK(page.getUsedEntryCount() == 2);
CHECK(page.eraseItem<uint32_t>(2, "foo1") == ESP_OK);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == 1);
for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", (long int)i);
CHECK(page.writeItem(1, name, i) == ESP_OK);
}
CHECK(page.getUsedEntryCount() == Page::ENTRY_COUNT - 1);
CHECK(page.getErasedEntryCount() == 1);
for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", (long int)i);
CHECK(page.eraseItem(1, itemTypeOf<size_t>(), name) == ESP_OK);
}
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == Page::ENTRY_COUNT - 1);
}
TEST_CASE("Page when page is full, adding an element fails", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", (long int)i);
CHECK(page.writeItem(1, name, i) == ESP_OK);
}
CHECK(page.writeItem(1, "foo", 64UL) == ESP_ERR_NVS_PAGE_FULL);
}
TEST_CASE("Page maintains its seq number")
{
PartitionEmulationFixture f;
{
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
CHECK(page.setSeqNumber(123) == ESP_OK);
int32_t val = 42;
CHECK(page.writeItem(1, ItemType::I32, "dummy", &val, sizeof(val)) == ESP_OK);
}
{
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
uint32_t seqno;
CHECK(page.getSeqNumber(seqno) == ESP_OK);
CHECK(seqno == 123);
}
}
TEST_CASE("Page can write and read variable length data", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
CHECK(page.load(&f.part, 0) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
size_t len = strlen(str);
CHECK(page.writeItem(1, "stuff1", 42) == ESP_OK);
CHECK(page.writeItem(1, "stuff2", 1) == ESP_OK);
CHECK(page.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
CHECK(page.writeItem(1, "stuff3", 2) == ESP_OK);
CHECK(page.writeItem(1, ItemType::BLOB, "baz", str, len) == ESP_OK);
CHECK(page.writeItem(1, "stuff4", 0x7abbccdd) == ESP_OK);
char buf[sizeof(str) + 16];
int32_t value;
CHECK(page.readItem(1, "stuff1", value) == ESP_OK);
CHECK(value == 42);
CHECK(page.readItem(1, "stuff2", value) == ESP_OK);
CHECK(value == 1);
CHECK(page.readItem(1, "stuff3", value) == ESP_OK);
CHECK(value == 2);
CHECK(page.readItem(1, "stuff4", value) == ESP_OK);
CHECK(value == 0x7abbccdd);
fill_n(buf, sizeof(buf), 0xff);
CHECK(page.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
fill_n(buf, sizeof(buf), 0xff);
CHECK(page.readItem(1, ItemType::BLOB, "baz", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str)) == 0);
}
TEST_CASE("Page different key names are distinguished even if the pointer is the same", "[nvs]")
{
PartitionEmulationFixture f;
Page page;
TEST_ESP_OK(page.load(&f.part, 0));
TEST_ESP_OK(page.writeItem(1, "i1", 1));
TEST_ESP_OK(page.writeItem(1, "i2", 2));
int32_t value;
char keyname[10] = {0};
for (int i = 0; i < 2; ++i) {
strncpy(keyname, "i1", sizeof(keyname) - 1);
TEST_ESP_OK(page.readItem(1, keyname, value));
CHECK(value == 1);
strncpy(keyname, "i2", sizeof(keyname) - 1);
TEST_ESP_OK(page.readItem(1, keyname, value));
CHECK(value == 2);
}
}
TEST_CASE("Page validates key size", "[nvs]")
{
PartitionEmulationFixture f(0, 4);
Page page;
TEST_ESP_OK(page.load(&f.part, 0));
// 16-character key fails
TEST_ESP_ERR(page.writeItem(1, "0123456789123456", 1), ESP_ERR_NVS_KEY_TOO_LONG);
// 15-character key is okay
TEST_ESP_OK(page.writeItem(1, "012345678912345", 1));
}
TEST_CASE("Page validates blob size", "[nvs]")
{
PartitionEmulationFixture f(0, 4);
Page page;
TEST_ESP_OK(page.load(&f.part, 0));
char buf[4096] = { 0 };
// There are two potential errors here:
// - not enough space in the page (because one value has been written already)
// - value is too long
// Check that the second one is actually returned.
TEST_ESP_ERR(page.writeItem(1, ItemType::BLOB, "2", buf, Page::ENTRY_COUNT * Page::ENTRY_SIZE), ESP_ERR_NVS_VALUE_TOO_LONG);
// Should fail as well
TEST_ESP_ERR(page.writeItem(1, ItemType::BLOB, "2", buf, Page::CHUNK_MAX_SIZE + 1), ESP_ERR_NVS_VALUE_TOO_LONG);
TEST_ESP_OK(page.writeItem(1, ItemType::BLOB, "2", buf, Page::CHUNK_MAX_SIZE));
}
TEST_CASE("Page handles invalid CRC of variable length items", "[nvs][cur]")
{
PartitionEmulationFixture f(0, 4);
{
Page page;
TEST_ESP_OK(page.load(&f.part, 0));
char buf[128] = {0};
TEST_ESP_OK(page.writeItem(1, ItemType::BLOB, "1", buf, sizeof(buf)));
}
// corrupt header of the item (64 is the offset of the first item in page)
uint32_t overwrite_buf = 0;
f.emu.write(64, &overwrite_buf, 4);
// load page again
{
Page page;
TEST_ESP_OK(page.load(&f.part, 0));
}
}
class HashListTestHelper : public HashList
{
public:
size_t getBlockCount()
{
return mBlockList.size();
}
};
TEST_CASE("HashList is cleaned up as soon as items are erased", "[nvs]")
{
HashListTestHelper hashlist;
// Add items
const size_t count = 128;
for (size_t i = 0; i < count; ++i) {
char key[16];
snprintf(key, sizeof(key), "i%ld", (long int)i);
Item item(1, ItemType::U32, 1, key);
hashlist.insert(item, i);
}
INFO("Added " << count << " items, " << hashlist.getBlockCount() << " blocks");
// Remove them in reverse order
for (size_t i = count; i > 0; --i) {
hashlist.erase(i - 1, true);
}
CHECK(hashlist.getBlockCount() == 0);
// Add again
for (size_t i = 0; i < count; ++i) {
char key[16];
snprintf(key, sizeof(key), "i%ld", (long int)i);
Item item(1, ItemType::U32, 1, key);
hashlist.insert(item, i);
}
INFO("Added " << count << " items, " << hashlist.getBlockCount() << " blocks");
// Remove them in the same order
for (size_t i = 0; i < count; ++i) {
hashlist.erase(i, true);
}
CHECK(hashlist.getBlockCount() == 0);
}
TEST_CASE("can init PageManager in empty flash", "[nvs]")
{
PartitionEmulationFixture f(0, 4);
PageManager pm;
CHECK(pm.load(&f.part, 0, 4) == ESP_OK);
}
TEST_CASE("PageManager adds page in the correct order", "[nvs]")
{
const size_t pageCount = 8;
PartitionEmulationFixture f(0, pageCount);
uint32_t pageNo[pageCount] = { -1U, 50, 11, -1U, 23, 22, 24, 49};
for (uint32_t i = 0; i < pageCount; ++i) {
Page p;
p.load(&f.part, i);
if (pageNo[i] != -1U) {
p.setSeqNumber(pageNo[i]);
p.writeItem(1, "foo", 10U);
}
}
PageManager pageManager;
CHECK(pageManager.load(&f.part, 0, pageCount) == ESP_OK);
uint32_t lastSeqNo = 0;
for (auto it = std::begin(pageManager); it != std::end(pageManager); ++it) {
uint32_t seqNo;
CHECK(it->getSeqNumber(seqNo) == ESP_OK);
CHECK(seqNo > lastSeqNo);
}
}
TEST_CASE("can init storage in empty flash", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
cout << "before check" << endl;
CHECK(storage.init(4, 4) == ESP_OK);
s_perf << "Time to init empty storage (4 sectors): " << f.emu.getTotalTime() << " us" << std::endl;
}
TEST_CASE("storage doesn't add duplicates within one page", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
int bar = 0;
CHECK(storage.writeItem(1, "bar", ++bar) == ESP_OK);
CHECK(storage.writeItem(1, "bar", ++bar) == ESP_OK);
Page page;
page.load(&f.part, 4);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == 1);
}
TEST_CASE("can write one item a thousand times", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
REQUIRE(storage.writeItem(1, "i", static_cast<int>(i)) == ESP_OK);
}
s_perf << "Time to write one item a thousand times: " << f.emu.getTotalTime() << " us (" << f.emu.getEraseOps() << " " << f.emu.getWriteOps() << " " << f.emu.getReadOps() << " " << f.emu.getWriteBytes() << " " << f.emu.getReadBytes() << ")" << std::endl;
}
TEST_CASE("storage doesn't add duplicates within multiple pages", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
int bar = 0;
CHECK(storage.writeItem(1, "bar", ++bar) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
CHECK(storage.writeItem(1, "foo", static_cast<int>(++bar)) == ESP_OK);
}
CHECK(storage.writeItem(1, "bar", ++bar) == ESP_OK);
Page page;
page.load(&f.part, 4);
CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_ERR_NVS_NOT_FOUND);
page.load(&f.part, 5);
CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_OK);
}
TEST_CASE("storage can find items on second page if first is not fully written and has cached search data", "[nvs]")
{
PartitionEmulationFixture f(0, 3);
Storage storage(&f.part);
CHECK(storage.init(0, 3) == ESP_OK);
int bar = 0;
uint8_t bigdata[(Page::CHUNK_MAX_SIZE - Page::ENTRY_SIZE)/2] = {0};
// write one big chunk of data
ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "1", bigdata, sizeof(bigdata)));
// write another big chunk of data
ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "2", bigdata, sizeof(bigdata)));
// write third one; it will not fit into the first page
ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "3", bigdata, sizeof(bigdata)));
size_t size;
ESP_ERROR_CHECK(storage.getItemDataSize(0, ItemType::BLOB, "1", size));
CHECK(size == sizeof(bigdata));
ESP_ERROR_CHECK(storage.getItemDataSize(0, ItemType::BLOB, "3", size));
CHECK(size == sizeof(bigdata));
}
TEST_CASE("can write and read variable length data lots of times", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
char buf[sizeof(str) + 16];
size_t len = strlen(str);
for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
CAPTURE(i);
CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
CHECK(storage.writeItem(1, "foo", static_cast<uint32_t>(i)) == ESP_OK);
uint32_t value;
CHECK(storage.readItem(1, "foo", value) == ESP_OK);
CHECK(value == i);
fill_n(buf, sizeof(buf), 0xff);
CHECK(storage.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
}
s_perf << "Time to write one string and one integer a thousand times: " << f.emu.getTotalTime() << " us (" << f.emu.getEraseOps() << " " << f.emu.getWriteOps() << " " << f.emu.getReadOps() << " " << f.emu.getWriteBytes() << " " << f.emu.getReadBytes() << ")" << std::endl;
}
TEST_CASE("can get length of variable length data", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
f.emu.randomize(200);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
size_t len = strlen(str);
CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
size_t dataSize;
CHECK(storage.getItemDataSize(1, ItemType::SZ, "foobaar", dataSize) == ESP_OK);
CHECK(dataSize == len + 1);
CHECK(storage.writeItem(2, ItemType::BLOB, "foobaar", str, len) == ESP_OK);
CHECK(storage.getItemDataSize(2, ItemType::BLOB, "foobaar", dataSize) == ESP_OK);
CHECK(dataSize == len);
}
TEST_CASE("can create namespaces", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
uint8_t nsi;
CHECK(storage.createOrOpenNamespace("wifi", false, nsi) == ESP_ERR_NVS_NOT_FOUND);
CHECK(storage.createOrOpenNamespace("wifi", true, nsi) == ESP_OK);
Page page;
page.load(&f.part, 4);
CHECK(page.findItem(Page::NS_INDEX, ItemType::U8, "wifi") == ESP_OK);
}
TEST_CASE("storage may become full", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
f.emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 3; ++i) {
char name[Item::MAX_KEY_LENGTH + 1];
snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
REQUIRE(storage.writeItem(1, name, static_cast<int>(i)) == ESP_OK);
}
REQUIRE(storage.writeItem(1, "foo", 10) == ESP_ERR_NVS_NOT_ENOUGH_SPACE);
}
TEST_CASE("can modify an item on a page which will be erased", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
CHECK(storage.init(0, 2) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 3 + 1; ++i) {
REQUIRE(storage.writeItem(1, "foo", 42U) == ESP_OK);
}
}
TEST_CASE("erase operations are distributed among sectors", "[nvs]")
{
const size_t sectors = 6;
PartitionEmulationFixture f(0, sectors);
Storage storage(&f.part);
CHECK(storage.init(0, sectors) == ESP_OK);
/* Fill some part of storage with static values */
const size_t static_sectors = 2;
for (size_t i = 0; i < static_sectors * Page::ENTRY_COUNT; ++i) {
char name[Item::MAX_KEY_LENGTH];
snprintf(name, sizeof(name), "static%d", (int) i);
REQUIRE(storage.writeItem(1, name, i) == ESP_OK);
}
/* Now perform many write operations */
const size_t write_ops = 2000;
for (size_t i = 0; i < write_ops; ++i) {
REQUIRE(storage.writeItem(1, "value", i) == ESP_OK);
}
/* Check that erase counts are distributed between the remaining sectors */
const size_t max_erase_cnt = write_ops / Page::ENTRY_COUNT / (sectors - static_sectors) + 1;
for (size_t i = 0; i < sectors; ++i) {
auto erase_cnt = f.emu.getSectorEraseCount(i);
INFO("Sector " << i << " erased " << erase_cnt);
CHECK(erase_cnt <= max_erase_cnt);
}
}
TEST_CASE("can erase items", "[nvs]")
{
PartitionEmulationFixture f(0, 8);
Storage storage(&f.part);
CHECK(storage.init(0, 3) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 2 - 3; ++i) {
char name[Item::MAX_KEY_LENGTH + 1];
snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
REQUIRE(storage.writeItem(3, name, static_cast<int>(i)) == ESP_OK);
}
CHECK(storage.writeItem(1, "foo", 32) == ESP_OK);
CHECK(storage.writeItem(2, "foo", 64) == ESP_OK);
CHECK(storage.eraseItem(2, "foo") == ESP_OK);
int val;
CHECK(storage.readItem(1, "foo", val) == ESP_OK);
CHECK(val == 32);
CHECK(storage.eraseNamespace(3) == ESP_OK);
CHECK(storage.readItem(2, "foo", val) == ESP_ERR_NVS_NOT_FOUND);
CHECK(storage.readItem(3, "key00222", val) == ESP_ERR_NVS_NOT_FOUND);
}
TEST_CASE("namespace name is deep copy", "[nvs]")
{
char ns_name[16];
strcpy(ns_name, "const_name");
nvs_handle_t handle_1;
nvs_handle_t handle_2;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
PartitionEmulationFixture f(NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN);
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("const_name", NVS_READWRITE, &handle_1));
strcpy(ns_name, "just_kidding");
CHECK(nvs_open("just_kidding", NVS_READONLY, &handle_2) == ESP_ERR_NVS_NOT_FOUND);
nvs_close(handle_1);
nvs_close(handle_2);
nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME);
}
TEST_CASE("readonly handle fails on writing", "[nvs]")
{
PartitionEmulationFixture f(0, 10);
const char* str = "value 0123456789abcdef0123456789abcdef";
const uint8_t blob[8] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7};
nvs_handle_t handle_1;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
// first, creating namespace...
TEST_ESP_OK(nvs_open("ro_ns", NVS_READWRITE, &handle_1));
nvs_close(handle_1);
TEST_ESP_OK(nvs_open("ro_ns", NVS_READONLY, &handle_1));
TEST_ESP_ERR(nvs_set_i32(handle_1, "key", 47), ESP_ERR_NVS_READ_ONLY);
TEST_ESP_ERR(nvs_set_str(handle_1, "key", str), ESP_ERR_NVS_READ_ONLY);
TEST_ESP_ERR(nvs_set_blob(handle_1, "key", blob, 8), ESP_ERR_NVS_READ_ONLY);
nvs_close(handle_1);
// without deinit it affects "nvs api tests"
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("nvs api tests", "[nvs]")
{
PartitionEmulationFixture f(0, 10);
f.emu.randomize(100);
nvs_handle_t handle_1;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_ERR(nvs_open("namespace1", NVS_READWRITE, &handle_1), ESP_ERR_NVS_NOT_INITIALIZED);
for (uint16_t i = NVS_FLASH_SECTOR; i <NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
f.emu.erase(i);
}
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
// TEST_ESP_ERR(nvs_set_i32(handle_1, "foo", 0x12345678), ESP_ERR_NVS_READ_ONLY);
// nvs_close(handle_1);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789));
nvs_handle_t handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", 0x3456789a));
const char* str = "value 0123456789abcdef0123456789abcdef";
TEST_ESP_OK(nvs_set_str(handle_2, "key", str));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(0x3456789a == v2);
char buf[strlen(str) + 1];
size_t buf_len = sizeof(buf);
size_t buf_len_needed;
TEST_ESP_OK(nvs_get_str(handle_2, "key", NULL, &buf_len_needed));
CHECK(buf_len_needed == buf_len);
size_t buf_len_short = buf_len - 1;
TEST_ESP_ERR(ESP_ERR_NVS_INVALID_LENGTH, nvs_get_str(handle_2, "key", buf, &buf_len_short));
CHECK(buf_len_short == buf_len);
size_t buf_len_long = buf_len + 1;
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len_long));
CHECK(buf_len_long == buf_len);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str));
nvs_close(handle_1);
nvs_close(handle_2);
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("deinit partition doesn't affect other partition's open handles", "[nvs]")
{
const char *OTHER_PARTITION_NAME = "other_part";
PartitionEmulationFixture f(0, 10);
PartitionEmulationFixture f_other(0, 10, OTHER_PARTITION_NAME);
const char* str = "value 0123456789abcdef0123456789abcdef";
const uint8_t blob[8] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7};
nvs_handle_t handle_1;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
f_other.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f_other.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open_from_partition(OTHER_PARTITION_NAME, "ns", NVS_READWRITE, &handle_1));
// Deinitializing must not interfere with the open handle from the other partition.
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x3456789a));
nvs_close(handle_1);
TEST_ESP_OK(nvs_flash_deinit_partition(OTHER_PARTITION_NAME));
}
TEST_CASE("nvs iterators tests", "[nvs]")
{
PartitionEmulationFixture f(0, 5);
const uint32_t NVS_FLASH_SECTOR = 0;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 5;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
for (uint16_t i = NVS_FLASH_SECTOR; i < NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
f.emu.erase(i);
}
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
nvs_iterator_t it;
nvs_entry_info_t info;
nvs_handle handle_1;
nvs_handle handle_2;
const uint32_t blob = 0x11223344;
const char *name_1 = "namespace1";
const char *name_2 = "namespace2";
TEST_ESP_OK(nvs_open(name_1, NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_open(name_2, NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i8(handle_1, "value1", -11));
TEST_ESP_OK(nvs_set_u8(handle_1, "value2", 11));
TEST_ESP_OK(nvs_set_i16(handle_1, "value3", 1234));
TEST_ESP_OK(nvs_set_u16(handle_1, "value4", -1234));
TEST_ESP_OK(nvs_set_i32(handle_1, "value5", -222));
TEST_ESP_OK(nvs_set_i32(handle_1, "value6", -222));
TEST_ESP_OK(nvs_set_i32(handle_1, "value7", -222));
TEST_ESP_OK(nvs_set_u32(handle_1, "value8", 222));
TEST_ESP_OK(nvs_set_u32(handle_1, "value9", 222));
TEST_ESP_OK(nvs_set_str(handle_1, "value10", "foo"));
TEST_ESP_OK(nvs_set_blob(handle_1, "value11", &blob, sizeof(blob)));
TEST_ESP_OK(nvs_set_i32(handle_2, "value1", -111));
TEST_ESP_OK(nvs_set_i32(handle_2, "value2", -111));
TEST_ESP_OK(nvs_set_i64(handle_2, "value3", -555));
TEST_ESP_OK(nvs_set_u64(handle_2, "value4", 555));
auto entry_count = [](const char *part, const char *name, nvs_type_t type)-> int {
int count;
nvs_iterator_t it = nvs_entry_find(part, name, type);
for (count = 0; it != nullptr; count++) {
it = nvs_entry_next(it);
}
return count;
};
SECTION("Number of entries found for specified namespace and type is correct")
{
CHECK(nvs_entry_find("", NULL, NVS_TYPE_ANY) == NULL);
CHECK(entry_count(NVS_DEFAULT_PART_NAME, NULL, NVS_TYPE_ANY) == 15);
CHECK(entry_count(NVS_DEFAULT_PART_NAME, name_1, NVS_TYPE_ANY) == 11);
CHECK(entry_count(NVS_DEFAULT_PART_NAME, name_1, NVS_TYPE_I32) == 3);
CHECK(entry_count(NVS_DEFAULT_PART_NAME, NULL, NVS_TYPE_I32) == 5);
CHECK(entry_count(NVS_DEFAULT_PART_NAME, NULL, NVS_TYPE_U64) == 1);
}
SECTION("New entry is not created when existing key-value pair is set")
{
CHECK(entry_count(NVS_DEFAULT_PART_NAME, name_2, NVS_TYPE_ANY) == 4);
TEST_ESP_OK(nvs_set_i32(handle_2, "value1", -222));
CHECK(entry_count(NVS_DEFAULT_PART_NAME, name_2, NVS_TYPE_ANY) == 4);
}
SECTION("Number of entries found decrease when entry is erased")
{
CHECK(entry_count(NVS_DEFAULT_PART_NAME, NULL, NVS_TYPE_U64) == 1);
TEST_ESP_OK(nvs_erase_key(handle_2, "value4"));
CHECK(entry_count(NVS_DEFAULT_PART_NAME, "", NVS_TYPE_U64) == 0);
}
SECTION("All fields of nvs_entry_info_t structure are correct")
{
it = nvs_entry_find(NVS_DEFAULT_PART_NAME, name_1, NVS_TYPE_I32);
CHECK(it != nullptr);
string key = "value5";
do {
nvs_entry_info(it, &info);
CHECK(string(name_1) == info.namespace_name);
CHECK(key == info.key);
CHECK(info.type == NVS_TYPE_I32);
it = nvs_entry_next(it);
key[5]++;
} while (it != NULL);
nvs_release_iterator(it);
}
SECTION("Entry info is not affected by subsequent erase")
{
nvs_entry_info_t info_after_erase;
it = nvs_entry_find(NVS_DEFAULT_PART_NAME, name_1, NVS_TYPE_ANY);
nvs_entry_info(it, &info);
TEST_ESP_OK(nvs_erase_key(handle_1, "value1"));
nvs_entry_info(it, &info_after_erase);
CHECK(memcmp(&info, &info_after_erase, sizeof(info)) == 0);
nvs_release_iterator(it);
}
SECTION("Entry info is not affected by subsequent set")
{
nvs_entry_info_t info_after_set;
it = nvs_entry_find(NVS_DEFAULT_PART_NAME, name_1, NVS_TYPE_ANY);
nvs_entry_info(it, &info);
TEST_ESP_OK(nvs_set_u8(handle_1, info.key, 44));
nvs_entry_info(it, &info_after_set);
CHECK(memcmp(&info, &info_after_set, sizeof(info)) == 0);
nvs_release_iterator(it);
}
SECTION("Iterating over multiple pages works correctly")
{
nvs_handle handle_3;
const char *name_3 = "namespace3";
const int entries_created = 250;
TEST_ESP_OK(nvs_open(name_3, NVS_READWRITE, &handle_3));
for (size_t i = 0; i < entries_created; i++) {
TEST_ESP_OK(nvs_set_u8(handle_3, to_string(i).c_str(), 123));
}
int entries_found = 0;
it = nvs_entry_find(NVS_DEFAULT_PART_NAME, name_3, NVS_TYPE_ANY);
while(it != nullptr) {
entries_found++;
it = nvs_entry_next(it);
}
CHECK(entries_created == entries_found);
nvs_release_iterator(it);
nvs_close(handle_3);
}
SECTION("Iterating over multi-page blob works correctly")
{
nvs_handle handle_3;
const char *name_3 = "namespace3";
const uint8_t multipage_blob[4096 * 2] = { 0 };
const int NUMBER_OF_ENTRIES_PER_PAGE = 125;
size_t occupied_entries;
TEST_ESP_OK(nvs_open(name_3, NVS_READWRITE, &handle_3));
nvs_set_blob(handle_3, "blob", multipage_blob, sizeof(multipage_blob));
TEST_ESP_OK(nvs_get_used_entry_count(handle_3, &occupied_entries));
CHECK(occupied_entries > NUMBER_OF_ENTRIES_PER_PAGE * 2);
CHECK(entry_count(NVS_DEFAULT_PART_NAME, name_3, NVS_TYPE_BLOB) == 1);
nvs_close(handle_3);
}
nvs_close(handle_1);
nvs_close(handle_2);
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("Iterator with not matching type iterates correctly", "[nvs]")
{
PartitionEmulationFixture f(0, 5);
nvs_iterator_t it;
nvs_handle_t my_handle;
const char* NAMESPACE = "test_ns_4";
const uint32_t NVS_FLASH_SECTOR = 0;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 5;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
for (uint16_t i = NVS_FLASH_SECTOR; i < NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
f.emu.erase(i);
}
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
// writing string to namespace (a type which spans multiple entries)
TEST_ESP_OK(nvs_open(NAMESPACE, NVS_READWRITE, &my_handle));
TEST_ESP_OK(nvs_set_str(my_handle, "test-string", "InitString0"));
TEST_ESP_OK(nvs_commit(my_handle));
nvs_close(my_handle);
it = nvs_entry_find(NVS_DEFAULT_PART_NAME, NAMESPACE, NVS_TYPE_I32);
CHECK(it == NULL);
// re-init to trigger cleaning up of broken items -> a corrupted string will be erased
nvs_flash_deinit();
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
it = nvs_entry_find(NVS_DEFAULT_PART_NAME, NAMESPACE, NVS_TYPE_STR);
CHECK(it != NULL);
nvs_release_iterator(it);
// without deinit it affects "nvs api tests"
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("wifi test", "[nvs]")
{
PartitionEmulationFixture f(0, 10);
f.emu.randomize(10);
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle_t misc_handle;
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &misc_handle));
char log[33];
size_t log_size = sizeof(log);
TEST_ESP_ERR(nvs_get_str(misc_handle, "log", log, &log_size), ESP_ERR_NVS_NOT_FOUND);
strcpy(log, "foobarbazfizzz");
TEST_ESP_OK(nvs_set_str(misc_handle, "log", log));
nvs_handle_t net80211_handle;
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &net80211_handle));
uint8_t opmode = 2;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "wifi.opmode", &opmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "wifi.opmode", opmode));
uint8_t country = 0;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "wifi.country", &opmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "wifi.country", opmode));
char ssid[36];
size_t size = sizeof(ssid);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.ssid", ssid, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(ssid, "my android AP");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.ssid", ssid, size));
char mac[6];
size = sizeof(mac);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.mac", mac, &size), ESP_ERR_NVS_NOT_FOUND);
memset(mac, 0xab, 6);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.mac", mac, size));
uint8_t authmode = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.authmode", &authmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.authmode", authmode));
char pswd[65];
size = sizeof(pswd);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.pswd", pswd, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(pswd, "`123456788990-=");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.pswd", pswd, size));
char pmk[32];
size = sizeof(pmk);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.pmk", pmk, &size), ESP_ERR_NVS_NOT_FOUND);
memset(pmk, 1, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.pmk", pmk, size));
uint8_t chan = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.chan", &chan), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.chan", chan));
uint8_t autoconn = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "auto.conn", &autoconn), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "auto.conn", autoconn));
uint8_t bssid_set = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "bssid.set", &bssid_set), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "bssid.set", bssid_set));
char bssid[6];
size = sizeof(bssid);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.bssid", bssid, &size), ESP_ERR_NVS_NOT_FOUND);
memset(mac, 0xcd, 6);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.bssid", bssid, size));
uint8_t phym = 3;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.phym", &phym), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.phym", phym));
uint8_t phybw = 2;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.phybw", &phybw), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.phybw", phybw));
char apsw[2];
size = sizeof(apsw);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.apsw", apsw, &size), ESP_ERR_NVS_NOT_FOUND);
memset(apsw, 0x2, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.apsw", apsw, size));
char apinfo[700];
size = sizeof(apinfo);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.apinfo", apinfo, &size), ESP_ERR_NVS_NOT_FOUND);
memset(apinfo, 0, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.apinfo", apinfo, size));
size = sizeof(ssid);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.ssid", ssid, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(ssid, "ESP_A2F340");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.ssid", ssid, size));
size = sizeof(mac);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.mac", mac, &size), ESP_ERR_NVS_NOT_FOUND);
memset(mac, 0xac, 6);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.mac", mac, size));
size = sizeof(pswd);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.passwd", pswd, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(pswd, "");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.passwd", pswd, size));
size = sizeof(pmk);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.pmk", pmk, &size), ESP_ERR_NVS_NOT_FOUND);
memset(pmk, 1, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.pmk", pmk, size));
chan = 6;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.chan", &chan), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.chan", chan));
authmode = 0;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.authmode", &authmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.authmode", authmode));
uint8_t hidden = 0;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.hidden", &hidden), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.hidden", hidden));
uint8_t max_conn = 4;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.max.conn", &max_conn), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.max.conn", max_conn));
uint8_t bcn_interval = 2;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "bcn_interval", &bcn_interval), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "bcn_interval", bcn_interval));
s_perf << "Time to simulate nvs init with wifi libs: " << f.emu.getTotalTime() << " us (" << f.emu.getEraseOps() << "E " << f.emu.getWriteOps() << "W " << f.emu.getReadOps() << "R " << f.emu.getWriteBytes() << "Wb " << f.emu.getReadBytes() << "Rb)" << std::endl;
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("writing the identical content does not write or erase", "[nvs]")
{
PartitionEmulationFixture f(0, 20);
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 10;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle misc_handle;
TEST_ESP_OK(nvs_open("test", NVS_READWRITE, &misc_handle));
// Test writing a u8 twice, then changing it
nvs_set_u8(misc_handle, "test_u8", 8);
f.emu.clearStats();
nvs_set_u8(misc_handle, "test_u8", 8);
CHECK(f.emu.getWriteOps() == 0);
CHECK(f.emu.getEraseOps() == 0);
CHECK(f.emu.getReadOps() != 0);
f.emu.clearStats();
nvs_set_u8(misc_handle, "test_u8", 9);
CHECK(f.emu.getWriteOps() != 0);
CHECK(f.emu.getReadOps() != 0);
// Test writing a string twice, then changing it
static const char *test[2] = {"Hello world.", "Hello world!"};
nvs_set_str(misc_handle, "test_str", test[0]);
f.emu.clearStats();
nvs_set_str(misc_handle, "test_str", test[0]);
CHECK(f.emu.getWriteOps() == 0);
CHECK(f.emu.getEraseOps() == 0);
CHECK(f.emu.getReadOps() != 0);
f.emu.clearStats();
nvs_set_str(misc_handle, "test_str", test[1]);
CHECK(f.emu.getWriteOps() != 0);
CHECK(f.emu.getReadOps() != 0);
// Test writing a multi-page blob, then changing it
uint8_t blob[Page::CHUNK_MAX_SIZE * 3] = {0};
memset(blob, 1, sizeof(blob));
nvs_set_blob(misc_handle, "test_blob", blob, sizeof(blob));
f.emu.clearStats();
nvs_set_blob(misc_handle, "test_blob", blob, sizeof(blob));
CHECK(f.emu.getWriteOps() == 0);
CHECK(f.emu.getEraseOps() == 0);
CHECK(f.emu.getReadOps() != 0);
blob[sizeof(blob) - 1]++;
f.emu.clearStats();
nvs_set_blob(misc_handle, "test_blob", blob, sizeof(blob));
CHECK(f.emu.getWriteOps() != 0);
CHECK(f.emu.getReadOps() != 0);
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("can init storage from flash with random contents", "[nvs]")
{
PartitionEmulationFixture f(0, 10);
f.emu.randomize(42);
nvs_handle_t handle;
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &handle));
uint8_t opmode = 2;
if (nvs_get_u8(handle, "wifi.opmode", &opmode) != ESP_OK) {
TEST_ESP_OK(nvs_set_u8(handle, "wifi.opmode", opmode));
}
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("nvs api tests, starting with random data in flash", "[nvs][long]")
{
const size_t testIters = 3000;
int lastPercent = -1;
for (size_t count = 0; count < testIters; ++count) {
int percentDone = (int) (count * 100 / testIters);
if (percentDone != lastPercent) {
lastPercent = percentDone;
printf("%d%%\n", percentDone);
}
PartitionEmulationFixture f(0, 10);
f.emu.randomize(static_cast<uint32_t>(count));
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle_t handle_1;
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
for (size_t i = 0; i < 500; ++i) {
nvs_handle_t handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789 % (i + 1)));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", static_cast<int32_t>(i)));
const char* str = "value 0123456789abcdef0123456789abcdef %09d";
char str_buf[128];
snprintf(str_buf, sizeof(str_buf), str, i + count * 1024);
TEST_ESP_OK(nvs_set_str(handle_2, "key", str_buf));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 % (i + 1) == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(static_cast<int32_t>(i) == v2);
char buf[128];
size_t buf_len = sizeof(buf);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str_buf));
nvs_close(handle_2);
}
nvs_close(handle_1);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
}
extern "C" void nvs_dump(const char *partName);
class RandomTest {
static const size_t nKeys = 11;
int32_t v1 = 0, v2 = 0;
uint64_t v3 = 0, v4 = 0;
static const size_t strBufLen = 1024;
static const size_t smallBlobLen = Page::CHUNK_MAX_SIZE / 3;
static const size_t largeBlobLen = Page::CHUNK_MAX_SIZE * 3;
char v5[strBufLen], v6[strBufLen], v7[strBufLen], v8[strBufLen], v9[strBufLen];
uint8_t v10[smallBlobLen], v11[largeBlobLen];
bool written[nKeys];
public:
RandomTest()
{
std::fill_n(written, nKeys, false);
}
template<typename TGen>
esp_err_t doRandomThings(nvs_handle_t handle, TGen gen, size_t& count) {
const char* keys[] = {"foo", "bar", "longkey_0123456", "another key", "param1", "param2", "param3", "param4", "param5", "singlepage", "multipage"};
const ItemType types[] = {ItemType::I32, ItemType::I32, ItemType::U64, ItemType::U64, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::BLOB, ItemType::BLOB};
void* values[] = {&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9, &v10, &v11};
const size_t nKeys = sizeof(keys) / sizeof(keys[0]);
static_assert(nKeys == sizeof(types) / sizeof(types[0]), "");
static_assert(nKeys == sizeof(values) / sizeof(values[0]), "");
auto randomRead = [&](size_t index) -> esp_err_t {
switch (types[index]) {
case ItemType::I32:
{
int32_t val;
auto err = nvs_get_i32(handle, keys[index], &val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(val == *reinterpret_cast<int32_t*>(values[index]));
}
break;
}
case ItemType::U64:
{
uint64_t val;
auto err = nvs_get_u64(handle, keys[index], &val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(val == *reinterpret_cast<uint64_t*>(values[index]));
}
break;
}
case ItemType::SZ:
{
char buf[strBufLen];
size_t len = strBufLen;
auto err = nvs_get_str(handle, keys[index], buf, &len);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(strncmp(buf, reinterpret_cast<const char*>(values[index]), strBufLen) == 0);
}
break;
}
case ItemType::BLOB:
{
uint32_t blobBufLen = 0;
if(strncmp(keys[index],"singlepage", sizeof("singlepage")) == 0) {
blobBufLen = smallBlobLen ;
} else {
blobBufLen = largeBlobLen ;
}
uint8_t buf[blobBufLen];
memset(buf, 0, blobBufLen);
size_t len = blobBufLen;
auto err = nvs_get_blob(handle, keys[index], buf, &len);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(memcmp(buf, reinterpret_cast<const uint8_t*>(values[index]), blobBufLen) == 0);
}
break;
}
default:
assert(0);
}
return ESP_OK;
};
auto randomWrite = [&](size_t index) -> esp_err_t {
switch (types[index]) {
case ItemType::I32:
{
int32_t val = static_cast<int32_t>(gen());
auto err = nvs_set_i32(handle, keys[index], val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
*reinterpret_cast<int32_t*>(values[index]) = val;
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
*reinterpret_cast<int32_t*>(values[index]) = val;
break;
}
case ItemType::U64:
{
uint64_t val = static_cast<uint64_t>(gen());
auto err = nvs_set_u64(handle, keys[index], val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
*reinterpret_cast<uint64_t*>(values[index]) = val;
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
*reinterpret_cast<uint64_t*>(values[index]) = val;
break;
}
case ItemType::SZ:
{
char buf[strBufLen];
size_t len = strBufLen;
size_t strLen = gen() % (strBufLen - 1);
std::generate_n(buf, strLen, [&]() -> char {
const char c = static_cast<char>(gen() % 127);
return (c < 32) ? 32 : c;
});
buf[strLen] = 0;
auto err = nvs_set_str(handle, keys[index], buf);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
break;
}
case ItemType::BLOB:
{
uint32_t blobBufLen = 0;
if(strncmp(keys[index],"singlepage", sizeof("singlepage")) == 0) {
blobBufLen = smallBlobLen ;
} else {
blobBufLen = largeBlobLen ;
}
uint8_t buf[blobBufLen];
memset(buf, 0, blobBufLen);
size_t blobLen = gen() % blobBufLen;
std::generate_n(buf, blobLen, [&]() -> uint8_t {
return static_cast<uint8_t>(gen() % 256);
});
auto err = nvs_set_blob(handle, keys[index], buf, blobLen);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
memcpy(reinterpret_cast<uint8_t*>(values[index]), buf, blobBufLen);
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
memcpy(reinterpret_cast<char*>(values[index]), buf, blobBufLen);
break;
}
default:
assert(0);
}
return ESP_OK;
};
for (; count != 0; --count) {
size_t index = gen() % (nKeys);
switch (gen() % 3) {
case 0: // read, 1/3
if (randomRead(index) == ESP_ERR_FLASH_OP_FAIL) {
return ESP_ERR_FLASH_OP_FAIL;
}
break;
default: // write, 2/3
if (randomWrite(index) == ESP_ERR_FLASH_OP_FAIL) {
return ESP_ERR_FLASH_OP_FAIL;
}
break;
}
}
return ESP_OK;
}
esp_err_t handleExternalWriteAtIndex(uint8_t index, const void* value, const size_t len ) {
if(index == 9) { /* This is only done for small-page blobs for now*/
if(len > smallBlobLen) {
return ESP_FAIL;
}
memcpy(v10, value, len);
written[index] = true;
return ESP_OK;
} else {
return ESP_FAIL;
}
}
};
TEST_CASE("monkey test", "[nvs][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
PartitionEmulationFixture f(0, 10);
f.emu.randomize(seed);
f.emu.clearStats();
const uint32_t NVS_FLASH_SECTOR = 2;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 8;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
RandomTest test;
size_t count = 1000;
CHECK(test.doRandomThings(handle, gen, count) == ESP_OK);
s_perf << "Monkey test: nErase=" << f.emu.getEraseOps() << " nWrite=" << f.emu.getWriteOps() << std::endl;
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("test recovery from sudden poweroff", "[long][nvs][recovery][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
const size_t iter_count = 2000;
size_t totalOps = 0;
int lastPercent = -1;
for (uint32_t errDelay = 0; ; ++errDelay) {
INFO(errDelay);
PartitionEmulationFixture f(0, 10);
const uint32_t NVS_FLASH_SECTOR = 2;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 8;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
f.emu.randomize(seed);
f.emu.clearStats();
f.emu.failAfter(errDelay);
RandomTest test;
if (totalOps != 0) {
int percent = errDelay * 100 / totalOps;
if (percent > lastPercent) {
printf("%d/%d (%d%%)\r\n", errDelay, static_cast<int>(totalOps), percent);
lastPercent = percent;
}
}
nvs_handle_t handle;
size_t count = iter_count;
if (NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN) == ESP_OK) {
auto res = ESP_ERR_FLASH_OP_FAIL;
if (nvs_open("namespace1", NVS_READWRITE, &handle) == ESP_OK) {
res = test.doRandomThings(handle, gen, count);
nvs_close(handle);
}
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
if (res != ESP_ERR_FLASH_OP_FAIL) {
// This means we got to the end without an error due to f.emu.failAfter(), therefore errDelay
// is high enough that we're not triggering it any more, therefore we're done
break;
}
}
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
auto res = test.doRandomThings(handle, gen, count);
if (res != ESP_OK) {
nvs_dump(NVS_DEFAULT_PART_NAME);
CHECK(0);
}
nvs_close(handle);
totalOps = f.emu.getEraseOps() + f.emu.getWriteBytes() / 4;
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
}
TEST_CASE("test for memory leaks in open/set", "[leaks]")
{
PartitionEmulationFixture f(0, 10);
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
for (int i = 0; i < 100000; ++i) {
nvs_handle_t light_handle = 0;
char lightbulb[1024] = {12, 13, 14, 15, 16};
TEST_ESP_OK(nvs_open("light", NVS_READWRITE, &light_handle));
TEST_ESP_OK(nvs_set_blob(light_handle, "key", lightbulb, sizeof(lightbulb)));
TEST_ESP_OK(nvs_commit(light_handle));
nvs_close(light_handle);
}
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("duplicate items are removed", "[nvs][dupes]")
{
PartitionEmulationFixture f(0, 3);
{
// create one item
nvs::Page p;
p.load(&f.part, 0);
p.writeItem<uint8_t>(1, "opmode", 3);
}
{
// add another two without deleting the first one
nvs::Item item(1, ItemType::U8, 1, "opmode");
item.data[0] = 2;
item.crc32 = item.calculateCrc32();
f.emu.write(3 * 32, reinterpret_cast<const uint32_t*>(&item), sizeof(item));
f.emu.write(4 * 32, reinterpret_cast<const uint32_t*>(&item), sizeof(item));
uint32_t mask = 0xFFFFFFEA;
f.emu.write(32, &mask, 4);
}
{
// load page and check that second item persists
nvs::Storage s(&f.part);
s.init(0, 3);
uint8_t val;
ESP_ERROR_CHECK(s.readItem(1, "opmode", val));
CHECK(val == 2);
}
{
Page p;
p.load(&f.part, 0);
CHECK(p.getErasedEntryCount() == 2);
CHECK(p.getUsedEntryCount() == 1);
}
}
TEST_CASE("recovery after failure to write data", "[nvs]")
{
PartitionEmulationFixture f(0, 3);
const char str[] = "value 0123456789abcdef012345678value 0123456789abcdef012345678";
// make flash write fail exactly in Page::writeEntryData
f.emu.failAfter(17);
{
Storage storage(&f.part);
TEST_ESP_OK(storage.init(0, 3));
TEST_ESP_ERR(storage.writeItem(1, ItemType::SZ, "key", str, strlen(str)), ESP_ERR_FLASH_OP_FAIL);
// check that repeated operations cause an error
TEST_ESP_ERR(storage.writeItem(1, ItemType::SZ, "key", str, strlen(str)), ESP_ERR_NVS_INVALID_STATE);
uint8_t val;
TEST_ESP_ERR(storage.readItem(1, ItemType::U8, "key", &val, sizeof(val)), ESP_ERR_NVS_NOT_FOUND);
}
{
// load page and check that data was erased
Page p;
p.load(&f.part, 0);
CHECK(p.getErasedEntryCount() == 3);
CHECK(p.getUsedEntryCount() == 0);
// try to write again
TEST_ESP_OK(p.writeItem(1, ItemType::SZ, "key", str, strlen(str)));
}
}
TEST_CASE("crc errors in item header are handled", "[nvs]")
{
PartitionEmulationFixture f(0, 3);
Storage storage(&f.part);
// prepare some data
TEST_ESP_OK(storage.init(0, 3));
TEST_ESP_OK(storage.writeItem(0, "ns1", static_cast<uint8_t>(1)));
TEST_ESP_OK(storage.writeItem(1, "value1", static_cast<uint32_t>(1)));
TEST_ESP_OK(storage.writeItem(1, "value2", static_cast<uint32_t>(2)));
// corrupt item header
uint32_t val = 0;
f.emu.write(32 * 3, &val, 4);
// check that storage can recover
TEST_ESP_OK(storage.init(0, 3));
TEST_ESP_OK(storage.readItem(1, "value2", val));
CHECK(val == 2);
// check that the corrupted item is no longer present
TEST_ESP_ERR(ESP_ERR_NVS_NOT_FOUND, storage.readItem(1, "value1", val));
// add more items to make the page full
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
char item_name[Item::MAX_KEY_LENGTH + 1];
snprintf(item_name, sizeof(item_name), "item_%ld", (long int)i);
TEST_ESP_OK(storage.writeItem(1, item_name, static_cast<uint32_t>(i)));
}
// corrupt another item on the full page
val = 0;
f.emu.write(32 * 4, &val, 4);
// check that storage can recover
TEST_ESP_OK(storage.init(0, 3));
// check that the corrupted item is no longer present
TEST_ESP_ERR(ESP_ERR_NVS_NOT_FOUND, storage.readItem(1, "value2", val));
}
TEST_CASE("crc error in variable length item is handled", "[nvs]")
{
PartitionEmulationFixture f(0, 3);
const uint64_t before_val = 0xbef04e;
const uint64_t after_val = 0xaf7e4;
// write some data
{
Page p;
p.load(&f.part, 0);
TEST_ESP_OK(p.writeItem<uint64_t>(0, "before", before_val));
const char* str = "foobar";
TEST_ESP_OK(p.writeItem(0, ItemType::SZ, "key", str, strlen(str)));
TEST_ESP_OK(p.writeItem<uint64_t>(0, "after", after_val));
}
// corrupt some data
uint32_t w;
CHECK(f.emu.read(&w, 32 * 3 + 8, sizeof(w)));
w &= 0xf000000f;
CHECK(f.emu.write(32 * 3 + 8, &w, sizeof(w)));
// load and check
{
Page p;
p.load(&f.part, 0);
CHECK(p.getUsedEntryCount() == 2);
CHECK(p.getErasedEntryCount() == 2);
uint64_t val;
TEST_ESP_OK(p.readItem<uint64_t>(0, "before", val));
CHECK(val == before_val);
TEST_ESP_ERR(p.findItem(0, ItemType::SZ, "key"), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(p.readItem<uint64_t>(0, "after", val));
CHECK(val == after_val);
}
}
TEST_CASE("read/write failure (TW8406)", "[nvs]")
{
PartitionEmulationFixture f(0, 3);
NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3);
for (int attempts = 0; attempts < 3; ++attempts) {
int i = 0;
nvs_handle_t light_handle = 0;
char key[15] = {0};
char data[76] = {12, 13, 14, 15, 16};
uint8_t number = 20;
size_t data_len = sizeof(data);
ESP_ERROR_CHECK(nvs_open("LIGHT", NVS_READWRITE, &light_handle));
ESP_ERROR_CHECK(nvs_set_u8(light_handle, "RecordNum", number));
for (i = 0; i < number; ++i) {
sprintf(key, "light%d", i);
ESP_ERROR_CHECK(nvs_set_blob(light_handle, key, data, sizeof(data)));
}
nvs_commit(light_handle);
uint8_t get_number = 0;
ESP_ERROR_CHECK(nvs_get_u8(light_handle, "RecordNum", &get_number));
REQUIRE(number == get_number);
for (i = 0; i < number; ++i) {
char data[76] = {0};
sprintf(key, "light%d", i);
ESP_ERROR_CHECK(nvs_get_blob(light_handle, key, data, &data_len));
}
nvs_close(light_handle);
}
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
}
TEST_CASE("nvs_flash_init checks for an empty page", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE;
uint8_t blob[blob_size] = {0};
PartitionEmulationFixture f(0, 8);
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5) );
nvs_handle_t handle;
TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
// Fill first page
TEST_ESP_OK( nvs_set_blob(handle, "1a", blob, blob_size) );
// Fill second page
TEST_ESP_OK( nvs_set_blob(handle, "2a", blob, blob_size) );
// Fill third page
TEST_ESP_OK( nvs_set_blob(handle, "3a", blob, blob_size) );
TEST_ESP_OK( nvs_commit(handle) );
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME));
// first two pages are now full, third one is writable, last two are empty
// init should fail
TEST_ESP_ERR( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3),
ESP_ERR_NVS_NO_FREE_PAGES );
// in case this test fails, to not affect other tests
nvs_flash_deinit_partition(NVS_DEFAULT_PART_NAME);
}
TEST_CASE("multiple partitions access check", "[nvs]")
{
SpiFlashEmulator emu(10);
PartitionEmulation p0(&emu, 0 * SPI_FLASH_SEC_SIZE, 5 * SPI_FLASH_SEC_SIZE, "nvs1");
PartitionEmulation p1(&emu, 5 * SPI_FLASH_SEC_SIZE, 5 * SPI_FLASH_SEC_SIZE, "nvs2");
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&p0, 0, 5) );
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&p1, 5, 5) );
nvs_handle_t handle1, handle2;
TEST_ESP_OK( nvs_open_from_partition("nvs1", "test", NVS_READWRITE, &handle1) );
TEST_ESP_OK( nvs_open_from_partition("nvs2", "test", NVS_READWRITE, &handle2) );
TEST_ESP_OK( nvs_set_i32(handle1, "foo", 0xdeadbeef));
TEST_ESP_OK( nvs_set_i32(handle2, "foo", 0xcafebabe));
int32_t v1, v2;
TEST_ESP_OK( nvs_get_i32(handle1, "foo", &v1));
TEST_ESP_OK( nvs_get_i32(handle2, "foo", &v2));
CHECK(v1 == 0xdeadbeef);
CHECK(v2 == 0xcafebabe);
TEST_ESP_OK(nvs_flash_deinit_partition(p0.get_partition_name()));
TEST_ESP_OK(nvs_flash_deinit_partition(p1.get_partition_name()));
}
TEST_CASE("nvs page selection takes into account free entries also not just erased entries", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE/2;
uint8_t blob[blob_size] = {0};
PartitionEmulationFixture f(0, 3);
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3) );
nvs_handle_t handle;
TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
// Fill first page
TEST_ESP_OK( nvs_set_blob(handle, "1a", blob, blob_size/3) );
TEST_ESP_OK( nvs_set_blob(handle, "1b", blob, blob_size) );
// Fill second page
TEST_ESP_OK( nvs_set_blob(handle, "2a", blob, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "2b", blob, blob_size) );
// The item below should be able to fit the first page.
TEST_ESP_OK( nvs_set_blob(handle, "3a", blob, 4) );
TEST_ESP_OK( nvs_commit(handle) );
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("calculate used and free space", "[nvs]")
{
PartitionEmulationFixture f(0, 6);
nvs_flash_deinit();
TEST_ESP_ERR(nvs_get_stats(NULL, NULL), ESP_ERR_INVALID_ARG);
nvs_stats_t stat1;
nvs_stats_t stat2;
TEST_ESP_ERR(nvs_get_stats(NULL, &stat1), ESP_ERR_NVS_NOT_INITIALIZED);
CHECK(stat1.free_entries == 0);
CHECK(stat1.namespace_count == 0);
CHECK(stat1.total_entries == 0);
CHECK(stat1.used_entries == 0);
nvs_handle_t handle = 0;
size_t h_count_entries;
TEST_ESP_ERR(nvs_get_used_entry_count(handle, &h_count_entries), ESP_ERR_NVS_INVALID_HANDLE);
CHECK(h_count_entries == 0);
// init nvs
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 6));
TEST_ESP_ERR(nvs_get_used_entry_count(handle, &h_count_entries), ESP_ERR_NVS_INVALID_HANDLE);
CHECK(h_count_entries == 0);
Page p;
// after erase. empty partition
TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
CHECK(stat1.free_entries != 0);
CHECK(stat1.namespace_count == 0);
CHECK(stat1.total_entries == 6 * p.ENTRY_COUNT);
CHECK(stat1.used_entries == 0);
// create namespace test_k1
nvs_handle_t handle_1;
TEST_ESP_OK(nvs_open("test_k1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
CHECK(stat2.free_entries + 1 == stat1.free_entries);
CHECK(stat2.namespace_count == 1);
CHECK(stat2.total_entries == stat1.total_entries);
CHECK(stat2.used_entries == 1);
// create pair key-value com
TEST_ESP_OK(nvs_set_i32(handle_1, "com", 0x12345678));
TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
CHECK(stat1.free_entries + 1 == stat2.free_entries);
CHECK(stat1.namespace_count == 1);
CHECK(stat1.total_entries == stat2.total_entries);
CHECK(stat1.used_entries == 2);
// change value in com
TEST_ESP_OK(nvs_set_i32(handle_1, "com", 0x01234567));
TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
CHECK(stat2.free_entries == stat1.free_entries);
CHECK(stat2.namespace_count == 1);
CHECK(stat2.total_entries != 0);
CHECK(stat2.used_entries == 2);
// create pair key-value ru
TEST_ESP_OK(nvs_set_i32(handle_1, "ru", 0x00FF00FF));
TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
CHECK(stat1.free_entries + 1 == stat2.free_entries);
CHECK(stat1.namespace_count == 1);
CHECK(stat1.total_entries != 0);
CHECK(stat1.used_entries == 3);
// amount valid pair in namespace 1
size_t h1_count_entries;
TEST_ESP_OK(nvs_get_used_entry_count(handle_1, &h1_count_entries));
CHECK(h1_count_entries == 2);
nvs_handle_t handle_2;
// create namespace test_k2
TEST_ESP_OK(nvs_open("test_k2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
CHECK(stat2.free_entries + 1 == stat1.free_entries);
CHECK(stat2.namespace_count == 2);
CHECK(stat2.total_entries == stat1.total_entries);
CHECK(stat2.used_entries == 4);
// create pair key-value
TEST_ESP_OK(nvs_set_i32(handle_2, "su1", 0x00000001));
TEST_ESP_OK(nvs_set_i32(handle_2, "su2", 0x00000002));
TEST_ESP_OK(nvs_set_i32(handle_2, "sus", 0x00000003));
TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
CHECK(stat1.free_entries + 3 == stat2.free_entries);
CHECK(stat1.namespace_count == 2);
CHECK(stat1.total_entries == stat2.total_entries);
CHECK(stat1.used_entries == 7);
CHECK(stat1.total_entries == (stat1.used_entries + stat1.free_entries));
// amount valid pair in namespace 2
size_t h2_count_entries;
TEST_ESP_OK(nvs_get_used_entry_count(handle_2, &h2_count_entries));
CHECK(h2_count_entries == 3);
CHECK(stat1.used_entries == (h1_count_entries + h2_count_entries + stat1.namespace_count));
nvs_close(handle_1);
nvs_close(handle_2);
size_t temp = h2_count_entries;
TEST_ESP_ERR(nvs_get_used_entry_count(handle_1, &h2_count_entries), ESP_ERR_NVS_INVALID_HANDLE);
CHECK(h2_count_entries == 0);
h2_count_entries = temp;
TEST_ESP_ERR(nvs_get_used_entry_count(handle_1, NULL), ESP_ERR_INVALID_ARG);
nvs_handle_t handle_3;
// create namespace test_k3
TEST_ESP_OK(nvs_open("test_k3", NVS_READWRITE, &handle_3));
TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
CHECK(stat2.free_entries + 1 == stat1.free_entries);
CHECK(stat2.namespace_count == 3);
CHECK(stat2.total_entries == stat1.total_entries);
CHECK(stat2.used_entries == 8);
// create pair blobs
uint32_t blob[12];
TEST_ESP_OK(nvs_set_blob(handle_3, "bl1", &blob, sizeof(blob)));
TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
CHECK(stat1.free_entries + 4 == stat2.free_entries);
CHECK(stat1.namespace_count == 3);
CHECK(stat1.total_entries == stat2.total_entries);
CHECK(stat1.used_entries == 12);
// amount valid pair in namespace 2
size_t h3_count_entries;
TEST_ESP_OK(nvs_get_used_entry_count(handle_3, &h3_count_entries));
CHECK(h3_count_entries == 4);
CHECK(stat1.used_entries == (h1_count_entries + h2_count_entries + h3_count_entries + stat1.namespace_count));
nvs_close(handle_3);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
// TODO: leaks memory
TEST_CASE("Recovery from power-off when the entry being erased is not on active page", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE/2 ;
size_t read_size = blob_size;
uint8_t blob[blob_size] = {0x11};
PartitionEmulationFixture f(0, 3);
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3) );
nvs_handle_t handle;
TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
f.emu.clearStats();
f.emu.failAfter(Page::CHUNK_MAX_SIZE/4 + 75);
TEST_ESP_OK( nvs_set_blob(handle, "1a", blob, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "1b", blob, blob_size) );
TEST_ESP_ERR( nvs_erase_key(handle, "1a"), ESP_ERR_FLASH_OP_FAIL );
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3) );
/* Check 1a is erased fully*/
TEST_ESP_ERR( nvs_get_blob(handle, "1a", blob, &read_size), ESP_ERR_NVS_NOT_FOUND);
/* Check 2b is still accessible*/
TEST_ESP_OK( nvs_get_blob(handle, "1b", blob, &read_size));
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
// TODO: leaks memory
TEST_CASE("Recovery from power-off when page is being freed.", "[nvs]")
{
const size_t blob_size = (Page::ENTRY_COUNT-3) * Page::ENTRY_SIZE;
size_t read_size = blob_size/2;
uint8_t blob[blob_size] = {0};
PartitionEmulationFixture f(0, 3);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("test", NVS_READWRITE, &handle));
// Fill first page
TEST_ESP_OK(nvs_set_blob(handle, "1a", blob, blob_size/3));
TEST_ESP_OK(nvs_set_blob(handle, "1b", blob, blob_size/3));
TEST_ESP_OK(nvs_set_blob(handle, "1c", blob, blob_size/4));
// Fill second page
TEST_ESP_OK(nvs_set_blob(handle, "2a", blob, blob_size/2));
TEST_ESP_OK(nvs_set_blob(handle, "2b", blob, blob_size/2));
TEST_ESP_OK(nvs_erase_key(handle, "1c"));
f.emu.clearStats();
f.emu.failAfter(6 * Page::ENTRY_COUNT);
TEST_ESP_ERR(nvs_set_blob(handle, "1d", blob, blob_size/4), ESP_ERR_FLASH_OP_FAIL);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3));
read_size = blob_size/3;
TEST_ESP_OK( nvs_get_blob(handle, "1a", blob, &read_size));
TEST_ESP_OK( nvs_get_blob(handle, "1b", blob, &read_size));
read_size = blob_size /4;
TEST_ESP_ERR( nvs_get_blob(handle, "1c", blob, &read_size), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_ERR( nvs_get_blob(handle, "1d", blob, &read_size), ESP_ERR_NVS_NOT_FOUND);
read_size = blob_size /2;
TEST_ESP_OK( nvs_get_blob(handle, "2a", blob, &read_size));
TEST_ESP_OK( nvs_get_blob(handle, "2b", blob, &read_size));
TEST_ESP_OK(nvs_commit(handle));
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Multi-page blobs are supported", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *2;
uint8_t blob[blob_size] = {0};
PartitionEmulationFixture f(0, 5);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("test", NVS_READWRITE, &handle));
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, blob_size));
TEST_ESP_OK(nvs_commit(handle));
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Failures are handled while storing multi-page blobs", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *7;
uint8_t blob[blob_size] = {0};
PartitionEmulationFixture f(0, 5);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("test", NVS_READWRITE, &handle));
TEST_ESP_ERR(nvs_set_blob(handle, "abc", blob, blob_size), ESP_ERR_NVS_VALUE_TOO_LONG);
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, Page::CHUNK_MAX_SIZE*2));
TEST_ESP_OK(nvs_commit(handle));
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Reading multi-page blobs", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *3;
uint8_t blob[blob_size];
uint8_t blob_read[blob_size];
size_t read_size = blob_size;
PartitionEmulationFixture f(0, 5);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5));
nvs_handle_t handle;
memset(blob, 0x11, blob_size);
memset(blob_read, 0xee, blob_size);
TEST_ESP_OK(nvs_open("readTest", NVS_READWRITE, &handle));
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, blob_size));
TEST_ESP_OK(nvs_get_blob(handle, "abc", blob_read, &read_size));
CHECK(memcmp(blob, blob_read, blob_size) == 0);
TEST_ESP_OK(nvs_commit(handle));
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Modification of values for Multi-page blobs are supported", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *2;
uint8_t blob[blob_size] = {0};
uint8_t blob_read[blob_size] = {0xfe};;
uint8_t blob2[blob_size] = {0x11};
uint8_t blob3[blob_size] = {0x22};
uint8_t blob4[blob_size] ={ 0x33};
size_t read_size = blob_size;
PartitionEmulationFixture f(0, 6);
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 6) );
nvs_handle_t handle;
memset(blob, 0x11, blob_size);
memset(blob2, 0x22, blob_size);
memset(blob3, 0x33, blob_size);
memset(blob4, 0x44, blob_size);
memset(blob_read, 0xff, blob_size);
TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
TEST_ESP_OK( nvs_set_blob(handle, "abc", blob, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "abc", blob2, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "abc", blob3, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "abc", blob4, blob_size) );
TEST_ESP_OK( nvs_get_blob(handle, "abc", blob_read, &read_size));
CHECK(memcmp(blob4, blob_read, blob_size) == 0);
TEST_ESP_OK( nvs_commit(handle) );
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Modification from single page blob to multi-page", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *3;
uint8_t blob[blob_size] = {0};
uint8_t blob_read[blob_size] = {0xff};
size_t read_size = blob_size;
PartitionEmulationFixture f(0, 5);
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5) );
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("Test", NVS_READWRITE, &handle) );
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, Page::CHUNK_MAX_SIZE/2));
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, blob_size));
TEST_ESP_OK(nvs_get_blob(handle, "abc", blob_read, &read_size));
CHECK(memcmp(blob, blob_read, blob_size) == 0);
TEST_ESP_OK(nvs_commit(handle) );
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Modification from multi-page to single page", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *3;
uint8_t blob[blob_size] = {0};
uint8_t blob_read[blob_size] = {0xff};
size_t read_size = blob_size;
PartitionEmulationFixture f(0, 5);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5) );
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("Test", NVS_READWRITE, &handle) );
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, blob_size));
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, Page::CHUNK_MAX_SIZE/2));
TEST_ESP_OK(nvs_set_blob(handle, "abc2", blob, blob_size));
TEST_ESP_OK(nvs_get_blob(handle, "abc", blob_read, &read_size));
CHECK(memcmp(blob, blob_read, Page::CHUNK_MAX_SIZE) == 0);
TEST_ESP_OK(nvs_commit(handle) );
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Multi-page blob erased using nvs_erase_key should not be found when probed for just length", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *3;
uint8_t blob[blob_size] = {0};
size_t read_size = blob_size;
PartitionEmulationFixture f(0, 5);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 5));
nvs_handle handle;
TEST_ESP_OK(nvs_open("Test", NVS_READWRITE, &handle));
TEST_ESP_OK(nvs_set_blob(handle, "abc", blob, blob_size));
TEST_ESP_OK(nvs_erase_key(handle, "abc"));
TEST_ESP_ERR(nvs_get_blob(handle, "abc", NULL, &read_size), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_commit(handle));
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Check that orphaned blobs are erased during init", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE *3 ;
uint8_t blob[blob_size] = {0x11};
uint8_t blob2[blob_size] = {0x22};
uint8_t blob3[blob_size] = {0x33};
PartitionEmulationFixture f(0, 5);
Storage storage(&f.part);
TEST_ESP_OK(storage.init(0, 5));
TEST_ESP_OK(storage.writeItem(1, ItemType::BLOB, "key", blob, sizeof(blob)));
TEST_ESP_OK(storage.init(0, 5));
/* Check that multi-page item is still available.**/
TEST_ESP_OK(storage.readItem(1, ItemType::BLOB, "key", blob, sizeof(blob)));
TEST_ESP_ERR(storage.writeItem(1, ItemType::BLOB, "key2", blob, sizeof(blob)), ESP_ERR_NVS_NOT_ENOUGH_SPACE);
Page p;
p.load(&f.part, 3); // This is where index will be placed.
p.erase();
TEST_ESP_OK(storage.init(0, 5));
TEST_ESP_ERR(storage.readItem(1, ItemType::BLOB, "key", blob, sizeof(blob)), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(storage.writeItem(1, ItemType::BLOB, "key3", blob, sizeof(blob)));
}
TEST_CASE("nvs blob fragmentation test", "[nvs]")
{
PartitionEmulationFixture f(0, 4);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 4) );
const size_t BLOB_SIZE = 3500;
uint8_t *blob = (uint8_t*) malloc(BLOB_SIZE);
CHECK(blob != NULL);
memset(blob, 0xEE, BLOB_SIZE);
const uint32_t magic = 0xff33eaeb;
nvs_handle_t h;
TEST_ESP_OK( nvs_open("blob_tests", NVS_READWRITE, &h) );
for (int i = 0; i < 128; i++) {
INFO("Iteration " << i << "...\n");
TEST_ESP_OK( nvs_set_u32(h, "magic", magic) );
TEST_ESP_OK( nvs_set_blob(h, "blob", blob, BLOB_SIZE) );
char seq_buf[16];
sprintf(seq_buf, "seq%d", i);
TEST_ESP_OK( nvs_set_u32(h, seq_buf, i) );
}
free(blob);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("nvs code handles errors properly when partition is near to full", "[nvs]")
{
const size_t blob_size = Page::CHUNK_MAX_SIZE * 0.3 ;
uint8_t blob[blob_size] = {0x11};
PartitionEmulationFixture f(0, 5);
Storage storage(&f.part);
char nvs_key[16] = "";
TEST_ESP_OK(storage.init(0, 5));
/* Four pages should fit roughly 12 blobs*/
for(uint8_t count = 1; count <= 12; count++) {
sprintf(nvs_key, "key:%u", count);
TEST_ESP_OK(storage.writeItem(1, ItemType::BLOB, nvs_key, blob, sizeof(blob)));
}
for(uint8_t count = 13; count <= 20; count++) {
sprintf(nvs_key, "key:%u", count);
TEST_ESP_ERR(storage.writeItem(1, ItemType::BLOB, nvs_key, blob, sizeof(blob)), ESP_ERR_NVS_NOT_ENOUGH_SPACE);
}
}
TEST_CASE("Check for nvs version incompatibility", "[nvs]")
{
PartitionEmulationFixture f(0, 3);
int32_t val1 = 0x12345678;
Page p;
p.load(&f.part, 0);
TEST_ESP_OK(p.setVersion(Page::NVS_VERSION - 1));
TEST_ESP_OK(p.writeItem(1, ItemType::I32, "foo", &val1, sizeof(val1)));
TEST_ESP_ERR(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3),
ESP_ERR_NVS_NEW_VERSION_FOUND);
// if something went wrong, clean up
nvs_flash_deinit_partition(f.part.get_partition_name());
}
TEST_CASE("Check that NVS supports old blob format without blob index", "[nvs]")
{
SpiFlashEmulator emu("../nvs_partition_generator/part_old_blob_format.bin");
PartitionEmulation part(&emu, 0, 2 * SPI_FLASH_SEC_SIZE, "test");
nvs_handle_t handle;
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(&part, 0, 2) );
TEST_ESP_OK( nvs_open_from_partition("test", "dummyNamespace", NVS_READWRITE, &handle));
char buf[64] = {0};
size_t buflen = 64;
uint8_t hexdata[] = {0x01, 0x02, 0x03, 0xab, 0xcd, 0xef};
TEST_ESP_OK( nvs_get_blob(handle, "dummyHex2BinKey", buf, &buflen));
CHECK(memcmp(buf, hexdata, buflen) == 0);
buflen = 64;
uint8_t base64data[] = {'1', '2', '3', 'a', 'b', 'c'};
TEST_ESP_OK( nvs_get_blob(handle, "dummyBase64Key", buf, &buflen));
CHECK(memcmp(buf, base64data, buflen) == 0);
Page p;
p.load(&part, 0);
/* Check that item is stored in old format without blob index*/
TEST_ESP_OK(p.findItem(1, ItemType::BLOB, "dummyHex2BinKey"));
/* Modify the blob so that it is stored in the new format*/
hexdata[0] = hexdata[1] = hexdata[2] = 0x99;
TEST_ESP_OK(nvs_set_blob(handle, "dummyHex2BinKey", hexdata, sizeof(hexdata)));
Page p2;
p2.load(&part, 0);
/* Check the type of the blob. Expect type mismatch since the blob is stored in new format*/
TEST_ESP_ERR(p2.findItem(1, ItemType::BLOB, "dummyHex2BinKey"), ESP_ERR_NVS_TYPE_MISMATCH);
/* Check that index is present for the modified blob according to new format*/
TEST_ESP_OK(p2.findItem(1, ItemType::BLOB_IDX, "dummyHex2BinKey"));
/* Read the blob in new format and check the contents*/
buflen = 64;
TEST_ESP_OK( nvs_get_blob(handle, "dummyBase64Key", buf, &buflen));
CHECK(memcmp(buf, base64data, buflen) == 0);
TEST_ESP_OK(nvs_flash_deinit_partition(part.get_partition_name()));
}
// TODO: leaks memory
TEST_CASE("monkey test with old-format blob present", "[nvs][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
PartitionEmulationFixture f(0, 10);
f.emu.randomize(seed);
f.emu.clearStats();
const uint32_t NVS_FLASH_SECTOR = 2;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 8;
static const size_t smallBlobLen = Page::CHUNK_MAX_SIZE / 3;
f.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
RandomTest test;
for ( uint8_t it = 0; it < 10; it++) {
size_t count = 200;
/* Erase index and chunks for the blob with "singlepage" key */
for (uint8_t num = NVS_FLASH_SECTOR; num < NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; num++) {
Page p;
p.load(&f.part, num);
p.eraseItem(1, ItemType::BLOB, "singlepage", Item::CHUNK_ANY, VerOffset::VER_ANY);
p.eraseItem(1, ItemType::BLOB_IDX, "singlepage", Item::CHUNK_ANY, VerOffset::VER_ANY);
p.eraseItem(1, ItemType::BLOB_DATA, "singlepage", Item::CHUNK_ANY, VerOffset::VER_ANY);
}
/* Now write "singlepage" blob in old format*/
for (uint8_t num = NVS_FLASH_SECTOR; num < NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; num++) {
Page p;
p.load(&f.part, num);
if (p.state() == Page::PageState::ACTIVE) {
uint8_t buf[smallBlobLen];
size_t blobLen = gen() % smallBlobLen;
if(blobLen > p.getVarDataTailroom()) {
blobLen = p.getVarDataTailroom();
}
std::generate_n(buf, blobLen, [&]() -> uint8_t {
return static_cast<uint8_t>(gen() % 256);
});
TEST_ESP_OK(p.writeItem(1, ItemType::BLOB, "singlepage", buf, blobLen, Item::CHUNK_ANY));
TEST_ESP_OK(p.findItem(1, ItemType::BLOB, "singlepage"));
test.handleExternalWriteAtIndex(9, buf, blobLen); // This assumes "singlepage" is always at index 9
break;
}
}
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
/* Initialize again */
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part,
NVS_FLASH_SECTOR,
NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
/* Perform random things */
auto res = test.doRandomThings(handle, gen, count);
if (res != ESP_OK) {
nvs_dump(NVS_DEFAULT_PART_NAME);
CHECK(0);
}
/* Check that only one version is present for "singlepage". Its possible that last iteration did not write
* anything for "singlepage". So either old version or new version should be present.*/
bool oldVerPresent = false, newVerPresent = false;
for (uint8_t num = NVS_FLASH_SECTOR; num < NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; num++) {
Page p;
p.load(&f.part, num);
if(!oldVerPresent && p.findItem(1, ItemType::BLOB, "singlepage", Item::CHUNK_ANY, VerOffset::VER_ANY) == ESP_OK) {
oldVerPresent = true;
}
if(!newVerPresent && p.findItem(1, ItemType::BLOB_IDX, "singlepage", Item::CHUNK_ANY, VerOffset::VER_ANY) == ESP_OK) {
newVerPresent = true;
}
}
CHECK(oldVerPresent != newVerPresent);
}
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
s_perf << "Monkey test: nErase=" << f.emu.getEraseOps() << " nWrite=" << f.emu.getWriteOps() << std::endl;
}
TEST_CASE("Recovery from power-off during modification of blob present in old-format (same page)", "[nvs]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
PartitionEmulationFixture f(0, 3);
f.emu.clearStats();
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
uint8_t hexdata[] = {0x01, 0x02, 0x03, 0xab, 0xcd, 0xef};
uint8_t hexdata_old[] = {0x11, 0x12, 0x13, 0xbb, 0xcc, 0xee};
size_t buflen = sizeof(hexdata);
uint8_t buf[Page::CHUNK_MAX_SIZE];
/* Power-off when blob was being written on the same page where its old version in old format
* was present*/
Page p;
p.load(&f.part, 0);
/* Write blob in old-format*/
TEST_ESP_OK(p.writeItem(1, ItemType::BLOB, "singlepage", hexdata_old, sizeof(hexdata_old)));
/* Write blob in new format*/
TEST_ESP_OK(p.writeItem(1, ItemType::BLOB_DATA, "singlepage", hexdata, sizeof(hexdata), 0));
/* All pages are stored. Now store the index.*/
Item item;
item.blobIndex.dataSize = sizeof(hexdata);
item.blobIndex.chunkCount = 1;
item.blobIndex.chunkStart = VerOffset::VER_0_OFFSET;
TEST_ESP_OK(p.writeItem(1, ItemType::BLOB_IDX, "singlepage", item.data, sizeof(item.data)));
TEST_ESP_OK(p.findItem(1, ItemType::BLOB, "singlepage"));
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
/* Initialize again */
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3));
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
TEST_ESP_OK( nvs_get_blob(handle, "singlepage", buf, &buflen));
CHECK(memcmp(buf, hexdata, buflen) == 0);
Page p2;
p2.load(&f.part, 0);
TEST_ESP_ERR(p2.findItem(1, ItemType::BLOB, "singlepage"), ESP_ERR_NVS_TYPE_MISMATCH);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
TEST_CASE("Recovery from power-off during modification of blob present in old-format (different page)", "[nvs]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
PartitionEmulationFixture f(0, 3);
f.emu.clearStats();
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3));
nvs_handle_t handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
uint8_t hexdata[] = {0x01, 0x02, 0x03, 0xab, 0xcd, 0xef};
uint8_t hexdata_old[] = {0x11, 0x12, 0x13, 0xbb, 0xcc, 0xee};
size_t buflen = sizeof(hexdata);
uint8_t buf[Page::CHUNK_MAX_SIZE];
/* Power-off when blob was being written on the different page where its old version in old format
* was present*/
Page p;
p.load(&f.part, 0);
/* Write blob in old-format*/
TEST_ESP_OK(p.writeItem(1, ItemType::BLOB, "singlepage", hexdata_old, sizeof(hexdata_old)));
/* Write blob in new format*/
TEST_ESP_OK(p.writeItem(1, ItemType::BLOB_DATA, "singlepage", hexdata, sizeof(hexdata), 0));
/* All pages are stored. Now store the index.*/
Item item;
item.blobIndex.dataSize = sizeof(hexdata);
item.blobIndex.chunkCount = 1;
item.blobIndex.chunkStart = VerOffset::VER_0_OFFSET;
p.markFull();
Page p2;
p2.load(&f.part, 1);
p2.setSeqNumber(1);
TEST_ESP_OK(p2.writeItem(1, ItemType::BLOB_IDX, "singlepage", item.data, sizeof(item.data)));
TEST_ESP_OK(p.findItem(1, ItemType::BLOB, "singlepage"));
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
/* Initialize again */
TEST_ESP_OK(NVSPartitionManager::get_instance()->init_custom(&f.part, 0, 3));
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
TEST_ESP_OK( nvs_get_blob(handle, "singlepage", buf, &buflen));
CHECK(memcmp(buf, hexdata, buflen) == 0);
Page p3;
p3.load(&f.part, 0);
TEST_ESP_ERR(p3.findItem(1, ItemType::BLOB, "singlepage"), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_flash_deinit_partition(f.part.get_partition_name()));
}
static void check_nvs_part_gen_args(SpiFlashEmulator *spi_flash_emulator,
char const *part_name,
int size,
char const *filename,
bool is_encr,
nvs_sec_cfg_t* xts_cfg)
{
nvs_handle_t handle;
esp_partition_t esp_part;
esp_part.encrypted = false; // we're not testing generic flash encryption here, only the legacy NVS encryption
esp_part.address = 0;
esp_part.size = size * SPI_FLASH_SEC_SIZE;
strncpy(esp_part.label, part_name, PART_NAME_MAX_SIZE);
shared_ptr<Partition> part;
if (is_encr) {
NVSEncryptedPartition *enc_part = new NVSEncryptedPartition(&esp_part);
TEST_ESP_OK(enc_part->init(xts_cfg));
part.reset(enc_part);
} else {
part.reset(new PartitionEmulation(spi_flash_emulator, 0, size, part_name));
}
TEST_ESP_OK( NVSPartitionManager::get_instance()->init_custom(part.get(), 0, size) );
TEST_ESP_OK( nvs_open_from_partition(part_name, "dummyNamespace", NVS_READONLY, &handle));
uint8_t u8v;
TEST_ESP_OK( nvs_get_u8(handle, "dummyU8Key", &u8v));
CHECK(u8v == 127);
int8_t i8v;
TEST_ESP_OK( nvs_get_i8(handle, "dummyI8Key", &i8v));
CHECK(i8v == -128);
uint16_t u16v;
TEST_ESP_OK( nvs_get_u16(handle, "dummyU16Key", &u16v));
CHECK(u16v == 32768);
uint32_t u32v;
TEST_ESP_OK( nvs_get_u32(handle, "dummyU32Key", &u32v));
CHECK(u32v == 4294967295);
int32_t i32v;
TEST_ESP_OK( nvs_get_i32(handle, "dummyI32Key", &i32v));
CHECK(i32v == -2147483648);
char buf[64] = {0};
size_t buflen = 64;
TEST_ESP_OK( nvs_get_str(handle, "dummyStringKey", buf, &buflen));
CHECK(strncmp(buf, "0A:0B:0C:0D:0E:0F", buflen) == 0);
uint8_t hexdata[] = {0x01, 0x02, 0x03, 0xab, 0xcd, 0xef};
buflen = 64;
int j;
TEST_ESP_OK( nvs_get_blob(handle, "dummyHex2BinKey", buf, &buflen));
CHECK(memcmp(buf, hexdata, buflen) == 0);
uint8_t base64data[] = {'1', '2', '3', 'a', 'b', 'c'};
TEST_ESP_OK( nvs_get_blob(handle, "dummyBase64Key", buf, &buflen));
CHECK(memcmp(buf, base64data, buflen) == 0);
buflen = 64;
uint8_t hexfiledata[] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef};
TEST_ESP_OK( nvs_get_blob(handle, "hexFileKey", buf, &buflen));
CHECK(memcmp(buf, hexfiledata, buflen) == 0);
buflen = 64;
uint8_t strfiledata[64] = "abcdefghijklmnopqrstuvwxyz\0";
TEST_ESP_OK( nvs_get_str(handle, "stringFileKey", buf, &buflen));
CHECK(memcmp(buf, strfiledata, buflen) == 0);
char bin_data[5200];
size_t bin_len = sizeof(bin_data);
char binfiledata[5200];
ifstream file;
file.open(filename);
file.read(binfiledata,5200);
TEST_ESP_OK( nvs_get_blob(handle, "binFileKey", bin_data, &bin_len));
CHECK(memcmp(bin_data, binfiledata, bin_len) == 0);
file.close();
nvs_close(handle);
TEST_ESP_OK(nvs_flash_deinit_partition(part_name));
}
TEST_CASE("check and read data from partition generated via partition generation utility with multipage blob support disabled", "[nvs_part_gen]")
{
int status;
int childpid = fork();
if (childpid == 0) {
exit(execlp("cp", " cp",
"-rf",
"../nvs_partition_generator/testdata",
".",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) != -1);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"generate",
"../nvs_partition_generator/sample_singlepage_blob.csv",
"partition_single_page.bin",
"0x3000",
"--version",
"1",
"--outdir",
"../nvs_partition_generator",NULL));
} else {
CHECK(childpid > 0);
int status;
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
SpiFlashEmulator emu("../nvs_partition_generator/partition_single_page.bin");
check_nvs_part_gen_args(&emu, "test", 3, "../nvs_partition_generator/testdata/sample_singlepage_blob.bin", false, NULL);
childpid = fork();
if (childpid == 0) {
exit(execlp("rm", " rm",
"-rf",
"testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
TEST_CASE("check and read data from partition generated via partition generation utility with multipage blob support enabled", "[nvs_part_gen]")
{
int status;
int childpid = fork();
if (childpid == 0) {
exit(execlp("cp", " cp",
"-rf",
"../nvs_partition_generator/testdata",
".",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"generate",
"../nvs_partition_generator/sample_multipage_blob.csv",
"partition_multipage_blob.bin",
"0x4000",
"--version",
"2",
"--outdir",
"../nvs_partition_generator",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
SpiFlashEmulator emu("../nvs_partition_generator/partition_multipage_blob.bin");
check_nvs_part_gen_args(&emu, "test", 4, "../nvs_partition_generator/testdata/sample_multipage_blob.bin",false,NULL);
childpid = fork();
if (childpid == 0) {
exit(execlp("rm", " rm",
"-rf",
"testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
TEST_CASE("check and read data from partition generated via manufacturing utility with multipage blob support disabled", "[mfg_gen]")
{
int childpid = fork();
int status;
if (childpid == 0) {
exit(execlp("bash", "bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test && \
cp -rf ../../../tools/mass_mfg/testdata mfg_testdata && \
cp -rf ../nvs_partition_generator/testdata . && \
mkdir -p ../../../tools/mass_mfg/host_test", NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../../../tools/mass_mfg/mfg_gen.py",
"generate",
"../../../tools/mass_mfg/samples/sample_config.csv",
"../../../tools/mass_mfg/samples/sample_values_singlepage_blob.csv",
"Test",
"0x3000",
"--outdir",
"../../../tools/mass_mfg/host_test",
"--version",
"1",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"generate",
"../../../tools/mass_mfg/host_test/csv/Test-1.csv",
"../nvs_partition_generator/Test-1-partition.bin",
"0x3000",
"--version",
"1",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
}
SpiFlashEmulator emu1("../../../tools/mass_mfg/host_test/bin/Test-1.bin");
check_nvs_part_gen_args(&emu1, "test", 3, "mfg_testdata/sample_singlepage_blob.bin", false, NULL);
SpiFlashEmulator emu2("../nvs_partition_generator/Test-1-partition.bin");
check_nvs_part_gen_args(&emu2, "test", 3, "testdata/sample_singlepage_blob.bin", false, NULL);
childpid = fork();
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test | \
rm -rf mfg_testdata | \
rm -rf testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
TEST_CASE("check and read data from partition generated via manufacturing utility with multipage blob support enabled", "[mfg_gen]")
{
int childpid = fork();
int status;
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test | \
cp -rf ../../../tools/mass_mfg/testdata mfg_testdata | \
cp -rf ../nvs_partition_generator/testdata . | \
mkdir -p ../../../tools/mass_mfg/host_test",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../../../tools/mass_mfg/mfg_gen.py",
"generate",
"../../../tools/mass_mfg/samples/sample_config.csv",
"../../../tools/mass_mfg/samples/sample_values_multipage_blob.csv",
"Test",
"0x4000",
"--outdir",
"../../../tools/mass_mfg/host_test",
"--version",
"2",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"generate",
"../../../tools/mass_mfg/host_test/csv/Test-1.csv",
"../nvs_partition_generator/Test-1-partition.bin",
"0x4000",
"--version",
"2",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
}
SpiFlashEmulator emu1("../../../tools/mass_mfg/host_test/bin/Test-1.bin");
check_nvs_part_gen_args(&emu1, "test", 4, "mfg_testdata/sample_multipage_blob.bin", false, NULL);
SpiFlashEmulator emu2("../nvs_partition_generator/Test-1-partition.bin");
check_nvs_part_gen_args(&emu2, "test", 4, "testdata/sample_multipage_blob.bin", false, NULL);
childpid = fork();
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test | \
rm -rf mfg_testdata | \
rm -rf testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
#if CONFIG_NVS_ENCRYPTION
TEST_CASE("check underlying xts code for 32-byte size sector encryption", "[nvs]")
{
auto toHex = [](char ch) {
if(ch >= '0' && ch <= '9')
return ch - '0';
else if(ch >= 'a' && ch <= 'f')
return ch - 'a' + 10;
else if(ch >= 'A' && ch <= 'F')
return ch - 'A' + 10;
else
return 0;
};
auto toHexByte = [toHex](char* c) {
return 16 * toHex(c[0]) + toHex(c[1]);
};
auto toHexStream = [toHexByte](char* src, uint8_t* dest) {
uint32_t cnt =0;
char* p = src;
while(*p != '\0' && *(p + 1) != '\0')
{
dest[cnt++] = toHexByte(p); p += 2;
}
};
uint8_t eky_hex[2 * NVS_KEY_SIZE];
uint8_t ptxt_hex[Page::ENTRY_SIZE], ctxt_hex[Page::ENTRY_SIZE], ba_hex[16];
mbedtls_aes_xts_context ectx[1];
mbedtls_aes_xts_context dctx[1];
char eky[][2 * NVS_KEY_SIZE + 1] = {
"0000000000000000000000000000000000000000000000000000000000000000",
"1111111111111111111111111111111111111111111111111111111111111111"
};
char tky[][2 * NVS_KEY_SIZE + 1] = {
"0000000000000000000000000000000000000000000000000000000000000000",
"2222222222222222222222222222222222222222222222222222222222222222"
};
char blk_addr[][2*16 + 1] = {
"00000000000000000000000000000000",
"33333333330000000000000000000000"
};
char ptxt[][2 * Page::ENTRY_SIZE + 1] = {
"0000000000000000000000000000000000000000000000000000000000000000",
"4444444444444444444444444444444444444444444444444444444444444444"
};
char ctxt[][2 * Page::ENTRY_SIZE + 1] = {
"d456b4fc2e620bba6ffbed27b956c9543454dd49ebd8d8ee6f94b65cbe158f73",
"e622334f184bbce129a25b2ac76b3d92abf98e22df5bdd15af471f3db8946a85"
};
mbedtls_aes_xts_init(ectx);
mbedtls_aes_xts_init(dctx);
for(uint8_t cnt = 0; cnt < sizeof(eky)/sizeof(eky[0]); cnt++) {
toHexStream(eky[cnt], eky_hex);
toHexStream(tky[cnt], &eky_hex[NVS_KEY_SIZE]);
toHexStream(ptxt[cnt], ptxt_hex);
toHexStream(ctxt[cnt], ctxt_hex);
toHexStream(blk_addr[cnt], ba_hex);
CHECK(!mbedtls_aes_xts_setkey_enc(ectx, eky_hex, 2 * NVS_KEY_SIZE * 8));
CHECK(!mbedtls_aes_xts_setkey_enc(dctx, eky_hex, 2 * NVS_KEY_SIZE * 8));
CHECK(!mbedtls_aes_crypt_xts(ectx, MBEDTLS_AES_ENCRYPT, Page::ENTRY_SIZE, ba_hex, ptxt_hex, ptxt_hex));
CHECK(!memcmp(ptxt_hex, ctxt_hex, Page::ENTRY_SIZE));
}
}
TEST_CASE("test nvs apis with encryption enabled", "[nvs]")
{
nvs_handle_t handle_1;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
nvs_sec_cfg_t xts_cfg;
for(int count = 0; count < NVS_KEY_SIZE; count++) {
xts_cfg.eky[count] = 0x11;
xts_cfg.tky[count] = 0x22;
}
EncryptedPartitionFixture fixture(&xts_cfg, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN);
fixture.emu.randomize(100);
fixture.emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
for (uint16_t i = NVS_FLASH_SECTOR; i <NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
fixture.emu.erase(i);
}
TEST_ESP_OK(NVSPartitionManager::get_instance()->
init_custom(&fixture.part, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789));
nvs_handle_t handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", 0x3456789a));
const char* str = "value 0123456789abcdef0123456789abcdef";
TEST_ESP_OK(nvs_set_str(handle_2, "key", str));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(0x3456789a == v2);
char buf[strlen(str) + 1];
size_t buf_len = sizeof(buf);
size_t buf_len_needed;
TEST_ESP_OK(nvs_get_str(handle_2, "key", NULL, &buf_len_needed));
CHECK(buf_len_needed == buf_len);
size_t buf_len_short = buf_len - 1;
TEST_ESP_ERR(ESP_ERR_NVS_INVALID_LENGTH, nvs_get_str(handle_2, "key", buf, &buf_len_short));
CHECK(buf_len_short == buf_len);
size_t buf_len_long = buf_len + 1;
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len_long));
CHECK(buf_len_long == buf_len);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str));
nvs_close(handle_1);
nvs_close(handle_2);
TEST_ESP_OK(nvs_flash_deinit());
}
TEST_CASE("test nvs apis for nvs partition generator utility with encryption enabled", "[nvs_part_gen]")
{
int status;
int childpid = fork();
if (childpid == 0) {
exit(execlp("cp", " cp",
"-rf",
"../nvs_partition_generator/testdata",
".",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"encrypt",
"../nvs_partition_generator/sample_multipage_blob.csv",
"partition_encrypted.bin",
"0x4000",
"--inputkey",
"../nvs_partition_generator/testdata/sample_encryption_keys.bin",
"--outdir",
"../nvs_partition_generator",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
SpiFlashEmulator emu("../nvs_partition_generator/partition_encrypted.bin");
nvs_sec_cfg_t cfg;
for(int count = 0; count < NVS_KEY_SIZE; count++) {
cfg.eky[count] = 0x11;
cfg.tky[count] = 0x22;
}
check_nvs_part_gen_args(&emu, NVS_DEFAULT_PART_NAME, 4, "../nvs_partition_generator/testdata/sample_multipage_blob.bin", true, &cfg);
childpid = fork();
if (childpid == 0) {
exit(execlp("rm", " rm",
"-rf",
"testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
TEST_CASE("test decrypt functionality for encrypted data", "[nvs_part_gen]")
{
//retrieving the temporary test data
int status = system("cp -rf ../nvs_partition_generator/testdata .");
CHECK(status == 0);
//encoding data from sample_multipage_blob.csv
status = system("python ../nvs_partition_generator/nvs_partition_gen.py generate ../nvs_partition_generator/sample_multipage_blob.csv partition_encoded.bin 0x5000 --outdir ../nvs_partition_generator");
CHECK(status == 0);
//encrypting data from sample_multipage_blob.csv
status = system("python ../nvs_partition_generator/nvs_partition_gen.py encrypt ../nvs_partition_generator/sample_multipage_blob.csv partition_encrypted.bin 0x5000 --inputkey ../nvs_partition_generator/testdata/sample_encryption_keys.bin --outdir ../nvs_partition_generator");
CHECK(status == 0);
//decrypting data from partition_encrypted.bin
status = system("python ../nvs_partition_generator/nvs_partition_gen.py decrypt ../nvs_partition_generator/partition_encrypted.bin ../nvs_partition_generator/testdata/sample_encryption_keys.bin ../nvs_partition_generator/partition_decrypted.bin");
CHECK(status == 0);
status = system("diff ../nvs_partition_generator/partition_decrypted.bin ../nvs_partition_generator/partition_encoded.bin");
CHECK(status == 0);
CHECK(WEXITSTATUS(status) == 0);
//cleaning up the temporary test data
status = system("rm -rf testdata");
CHECK(status == 0);
}
TEST_CASE("test nvs apis for nvs partition generator utility with encryption enabled using keygen", "[nvs_part_gen]")
{
int childpid = fork();
int status;
if (childpid == 0) {
exit(execlp("cp", " cp",
"-rf",
"../nvs_partition_generator/testdata",
".",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("rm", " rm",
"-rf",
"../nvs_partition_generator/keys",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"encrypt",
"../nvs_partition_generator/sample_multipage_blob.csv",
"partition_encrypted_using_keygen.bin",
"0x4000",
"--keygen",
"--outdir",
"../nvs_partition_generator",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
}
DIR *dir;
struct dirent *file;
char *filename;
char *files;
char *file_ext;
dir = opendir("../nvs_partition_generator/keys");
while ((file = readdir(dir)) != NULL)
{
filename = file->d_name;
files = strrchr(filename, '.');
if (files != NULL)
{
file_ext = files+1;
if (strncmp(file_ext,"bin",3) == 0)
{
break;
}
}
}
std::string encr_file = std::string("../nvs_partition_generator/keys/") + std::string(filename);
SpiFlashEmulator emu("../nvs_partition_generator/partition_encrypted_using_keygen.bin");
char buffer[64];
FILE *fp;
fp = fopen(encr_file.c_str(),"rb");
fread(buffer,sizeof(buffer),1,fp);
fclose(fp);
nvs_sec_cfg_t cfg;
for(int count = 0; count < NVS_KEY_SIZE; count++) {
cfg.eky[count] = buffer[count] & 255;
cfg.tky[count] = buffer[count+32] & 255;
}
check_nvs_part_gen_args(&emu, NVS_DEFAULT_PART_NAME, 4, "../nvs_partition_generator/testdata/sample_multipage_blob.bin", true, &cfg);
}
TEST_CASE("test nvs apis for nvs partition generator utility with encryption enabled using inputkey", "[nvs_part_gen]")
{
int childpid = fork();
int status;
DIR *dir;
struct dirent *file;
char *filename;
char *files;
char *file_ext;
dir = opendir("../nvs_partition_generator/keys");
while ((file = readdir(dir)) != NULL)
{
filename = file->d_name;
files = strrchr(filename, '.');
if (files != NULL)
{
file_ext = files+1;
if (strncmp(file_ext,"bin",3) == 0)
{
break;
}
}
}
std::string encr_file = std::string("../nvs_partition_generator/keys/") + std::string(filename);
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"encrypt",
"../nvs_partition_generator/sample_multipage_blob.csv",
"partition_encrypted_using_keyfile.bin",
"0x4000",
"--inputkey",
encr_file.c_str(),
"--outdir",
"../nvs_partition_generator",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
SpiFlashEmulator emu("../nvs_partition_generator/partition_encrypted_using_keyfile.bin");
char buffer[64];
FILE *fp;
fp = fopen(encr_file.c_str(),"rb");
fread(buffer,sizeof(buffer),1,fp);
fclose(fp);
nvs_sec_cfg_t cfg;
for(int count = 0; count < NVS_KEY_SIZE; count++) {
cfg.eky[count] = buffer[count] & 255;
cfg.tky[count] = buffer[count+32] & 255;
}
check_nvs_part_gen_args(&emu, NVS_DEFAULT_PART_NAME, 4, "../nvs_partition_generator/testdata/sample_multipage_blob.bin", true, &cfg);
childpid = fork();
if (childpid == 0) {
exit(execlp("rm", " rm",
"-rf",
"../nvs_partition_generator/keys",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("rm", " rm",
"-rf",
"testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
}
TEST_CASE("check and read data from partition generated via manufacturing utility with encryption enabled using sample inputkey", "[mfg_gen]")
{
int childpid = fork();
int status;
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test | \
cp -rf ../../../tools/mass_mfg/testdata mfg_testdata | \
cp -rf ../nvs_partition_generator/testdata . | \
mkdir -p ../../../tools/mass_mfg/host_test",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../../../tools/mass_mfg/mfg_gen.py",
"generate",
"../../../tools/mass_mfg/samples/sample_config.csv",
"../../../tools/mass_mfg/samples/sample_values_multipage_blob.csv",
"Test",
"0x4000",
"--outdir",
"../../../tools/mass_mfg/host_test",
"--version",
"2",
"--inputkey",
"mfg_testdata/sample_encryption_keys.bin",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"encrypt",
"../../../tools/mass_mfg/host_test/csv/Test-1.csv",
"../nvs_partition_generator/Test-1-partition-encrypted.bin",
"0x4000",
"--version",
"2",
"--inputkey",
"testdata/sample_encryption_keys.bin",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
}
SpiFlashEmulator emu1("../../../tools/mass_mfg/host_test/bin/Test-1.bin");
nvs_sec_cfg_t cfg;
for(int count = 0; count < NVS_KEY_SIZE; count++) {
cfg.eky[count] = 0x11;
cfg.tky[count] = 0x22;
}
check_nvs_part_gen_args(&emu1, NVS_DEFAULT_PART_NAME, 4, "mfg_testdata/sample_multipage_blob.bin", true, &cfg);
SpiFlashEmulator emu2("../nvs_partition_generator/Test-1-partition-encrypted.bin");
check_nvs_part_gen_args(&emu2, NVS_DEFAULT_PART_NAME, 4, "testdata/sample_multipage_blob.bin", true, &cfg);
childpid = fork();
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test | \
rm -rf mfg_testdata | \
rm -rf testdata",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
TEST_CASE("check and read data from partition generated via manufacturing utility with encryption enabled using new generated key", "[mfg_gen]")
{
int childpid = fork();
int status;
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf ../../../tools/mass_mfg/host_test | \
cp -rf ../../../tools/mass_mfg/testdata mfg_testdata | \
cp -rf ../nvs_partition_generator/testdata . | \
mkdir -p ../../../tools/mass_mfg/host_test",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../../../tools/mass_mfg/mfg_gen.py",
"generate-key",
"--outdir",
"../../../tools/mass_mfg/host_test",
"--keyfile",
"encr_keys_host_test.bin",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../../../tools/mass_mfg/mfg_gen.py",
"generate",
"../../../tools/mass_mfg/samples/sample_config.csv",
"../../../tools/mass_mfg/samples/sample_values_multipage_blob.csv",
"Test",
"0x4000",
"--outdir",
"../../../tools/mass_mfg/host_test",
"--version",
"2",
"--inputkey",
"../../../tools/mass_mfg/host_test/keys/encr_keys_host_test.bin",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
childpid = fork();
if (childpid == 0) {
exit(execlp("python", "python",
"../nvs_partition_generator/nvs_partition_gen.py",
"encrypt",
"../../../tools/mass_mfg/host_test/csv/Test-1.csv",
"../nvs_partition_generator/Test-1-partition-encrypted.bin",
"0x4000",
"--version",
"2",
"--inputkey",
"../../../tools/mass_mfg/host_test/keys/encr_keys_host_test.bin",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
}
}
SpiFlashEmulator emu1("../../../tools/mass_mfg/host_test/bin/Test-1.bin");
char buffer[64];
FILE *fp;
fp = fopen("../../../tools/mass_mfg/host_test/keys/encr_keys_host_test.bin","rb");
fread(buffer,sizeof(buffer),1,fp);
fclose(fp);
nvs_sec_cfg_t cfg;
for(int count = 0; count < NVS_KEY_SIZE; count++) {
cfg.eky[count] = buffer[count] & 255;
cfg.tky[count] = buffer[count+32] & 255;
}
check_nvs_part_gen_args(&emu1, NVS_DEFAULT_PART_NAME, 4, "mfg_testdata/sample_multipage_blob.bin", true, &cfg);
SpiFlashEmulator emu2("../nvs_partition_generator/Test-1-partition-encrypted.bin");
check_nvs_part_gen_args(&emu2, NVS_DEFAULT_PART_NAME, 4, "testdata/sample_multipage_blob.bin", true, &cfg);
childpid = fork();
if (childpid == 0) {
exit(execlp("bash", " bash",
"-c",
"rm -rf keys | \
rm -rf mfg_testdata | \
rm -rf testdata | \
rm -rf ../../../tools/mass_mfg/host_test",NULL));
} else {
CHECK(childpid > 0);
waitpid(childpid, &status, 0);
CHECK(WEXITSTATUS(status) == 0);
}
}
#endif
/* Add new tests above */
/* This test has to be the final one */
TEST_CASE("dump all performance data", "[nvs]")
{
std::cout << "====================" << std::endl << "Dumping benchmarks" << std::endl;
std::cout << s_perf.str() << std::endl;
std::cout << "====================" << std::endl;
}