esp-idf/components/usb/usb_host.c

1360 wiersze
49 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
Warning: The USB Host Library API is still a beta version and may be subject to change
*/
#include <stdlib.h>
#include <stdint.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_heap_caps.h"
#include "hub.h"
#include "usbh.h"
#include "esp_private/usb_phy.h"
#include "usb/usb_host.h"
static portMUX_TYPE host_lock = portMUX_INITIALIZER_UNLOCKED;
#define HOST_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&host_lock)
#define HOST_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&host_lock)
#define HOST_ENTER_CRITICAL() portENTER_CRITICAL(&host_lock)
#define HOST_EXIT_CRITICAL() portEXIT_CRITICAL(&host_lock)
#define HOST_ENTER_CRITICAL_SAFE() portENTER_CRITICAL_SAFE(&host_lock)
#define HOST_EXIT_CRITICAL_SAFE() portEXIT_CRITICAL_SAFE(&host_lock)
#define HOST_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HOST_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HOST_EXIT_CRITICAL(); \
return ret_val; \
} \
})
#define PROCESS_PENDING_FLAG_USBH 0x01
#define PROCESS_PENDING_FLAG_HUB 0x02
#define PROCESS_PENDING_FLAG_EVENT 0x04
typedef struct endpoint_s endpoint_t;
typedef struct interface_s interface_t;
typedef struct client_s client_t;
struct endpoint_s {
//Dynamic members require a critical section
struct {
TAILQ_ENTRY(endpoint_s) tailq_entry;
union {
struct {
uint32_t pending: 1;
uint32_t reserved31:31;
};
} flags;
uint32_t num_urb_inflight;
hcd_pipe_event_t last_event;
} dynamic;
//Constant members do no change after claiming the interface thus do not require a critical section
struct {
hcd_pipe_handle_t pipe_hdl;
const usb_ep_desc_t *ep_desc;
interface_t *intf_obj;
} constant;
};
struct interface_s {
//Dynamic members require a critical section
struct {
TAILQ_ENTRY(interface_s) tailq_entry;
} mux_protected;
//Constant members do no change after claiming the interface thus do not require a critical section
struct {
const usb_intf_desc_t *intf_desc;
usb_device_handle_t dev_hdl;
client_t *client_obj;
endpoint_t *endpoints[0];
} constant;
};
struct client_s {
//Dynamic members require a critical section
struct {
TAILQ_ENTRY(client_s) tailq_entry;
TAILQ_HEAD(tailhead_pending_ep, endpoint_s) pending_ep_tailq;
TAILQ_HEAD(tailhead_idle_ep, endpoint_s) idle_ep_tailq;
TAILQ_HEAD(tailhead_done_ctrl_xfers, urb_s) done_ctrl_xfer_tailq;
union {
struct {
uint32_t events_pending: 1;
uint32_t handling_events: 1;
uint32_t blocked: 1;
uint32_t taking_mux: 1;
uint32_t reserved4: 4;
uint32_t num_intf_claimed: 8;
uint32_t reserved16: 16;
};
uint32_t val;
} flags;
uint32_t num_done_ctrl_xfer;
uint32_t opened_dev_addr_map;
} dynamic;
//Mux protected members must be protected by host library the mux_lock when accessed
struct {
TAILQ_HEAD(tailhead_interfaces, interface_s) interface_tailq;
} mux_protected;
//Constant members do no change after registration thus do not require a critical section
struct {
SemaphoreHandle_t event_sem;
usb_host_client_event_cb_t event_callback;
void *callback_arg;
QueueHandle_t event_msg_queue;
} constant;
};
typedef struct {
//Dynamic members require a critical section
struct {
//Access to these should be done in a critical section
uint32_t process_pending_flags;
uint32_t lib_event_flags;
union {
struct {
uint32_t process_pending: 1;
uint32_t handling_events: 1;
uint32_t blocked: 1;
uint32_t reserved5: 5;
uint32_t num_clients: 8;
uint32_t reserved16: 16;
};
uint32_t val;
} flags;
} dynamic;
//Mux protected members must be protected by host library the mux_lock when accessed
struct {
TAILQ_HEAD(tailhead_clients, client_s) client_tailq; //List of all clients registered
} mux_protected;
//Constant members do no change after installation thus do not require a critical section
struct {
SemaphoreHandle_t event_sem;
SemaphoreHandle_t mux_lock;
usb_phy_handle_t phy_handle; //Will be NULL if host library is installed with skip_phy_setup
} constant;
} host_lib_t;
static host_lib_t *p_host_lib_obj = NULL;
const char *USB_HOST_TAG = "USB HOST";
// ----------------------------------------------------- Helpers -------------------------------------------------------
static inline void _record_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
client_obj->dynamic.opened_dev_addr_map |= (1 << (dev_addr - 1));
}
static inline void _clear_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
client_obj->dynamic.opened_dev_addr_map &= ~(1 << (dev_addr - 1));
}
static inline bool _check_client_opened_device(client_t *client_obj, uint8_t dev_addr)
{
assert(dev_addr != 0);
return (client_obj->dynamic.opened_dev_addr_map & (1 << (dev_addr - 1)));
}
static bool _unblock_client(client_t *client_obj, bool in_isr)
{
bool send_sem;
if (!client_obj->dynamic.flags.events_pending && !client_obj->dynamic.flags.handling_events) {
client_obj->dynamic.flags.events_pending = 1;
send_sem = true;
} else {
send_sem = false;
}
HOST_EXIT_CRITICAL_SAFE();
bool yield = false;
if (send_sem) {
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(client_obj->constant.event_sem, &xTaskWoken);
yield = (xTaskWoken == pdTRUE);
} else {
xSemaphoreGive(client_obj->constant.event_sem);
}
}
HOST_ENTER_CRITICAL_SAFE();
return yield;
}
static bool _unblock_lib(bool in_isr)
{
bool send_sem;
if (!p_host_lib_obj->dynamic.flags.process_pending && !p_host_lib_obj->dynamic.flags.handling_events) {
p_host_lib_obj->dynamic.flags.process_pending = 1;
send_sem = true;
} else {
send_sem = false;
}
HOST_EXIT_CRITICAL_SAFE();
bool yield = false;
if (send_sem) {
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xSemaphoreGiveFromISR(p_host_lib_obj->constant.event_sem, &xTaskWoken);
yield = (xTaskWoken == pdTRUE);
} else {
xSemaphoreGive(p_host_lib_obj->constant.event_sem);
}
}
HOST_ENTER_CRITICAL_SAFE();
return yield;
}
static void send_event_msg_to_clients(const usb_host_client_event_msg_t *event_msg, bool send_to_all, uint8_t opened_dev_addr)
{
//Lock client list
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
//Send event message to relevant or all clients
client_t *client_obj;
TAILQ_FOREACH(client_obj, &p_host_lib_obj->mux_protected.client_tailq, dynamic.tailq_entry) {
if (!send_to_all) {
//Check if client opened the device
HOST_ENTER_CRITICAL();
bool send = _check_client_opened_device(client_obj, opened_dev_addr);
HOST_EXIT_CRITICAL();
if (!send) {
continue;
}
}
//Send the event message
if (xQueueSend(client_obj->constant.event_msg_queue, event_msg, 0) == pdTRUE) {
HOST_ENTER_CRITICAL();
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
} else {
ESP_LOGE(USB_HOST_TAG, "Client event message queue full");
}
}
//Unlock client list
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
}
// ---------------------------------------------------- Callbacks ------------------------------------------------------
// ------------------- Library Related ---------------------
static bool notif_callback(usb_notif_source_t source, bool in_isr, void *arg)
{
HOST_ENTER_CRITICAL_SAFE();
//Store notification source
switch (source) {
case USB_NOTIF_SOURCE_USBH:
p_host_lib_obj->dynamic.process_pending_flags |= PROCESS_PENDING_FLAG_USBH;
break;
case USB_NOTIF_SOURCE_HUB:
p_host_lib_obj->dynamic.process_pending_flags |= PROCESS_PENDING_FLAG_HUB;
break;
}
bool yield = _unblock_lib(in_isr);
HOST_EXIT_CRITICAL_SAFE();
return yield;
}
static void ctrl_xfer_callback(usb_device_handle_t dev_hdl, urb_t *urb, void *arg)
{
assert(urb->usb_host_client != NULL);
//Redistribute done control transfer to the clients that submitted them
client_t *client_obj = (client_t *)urb->usb_host_client;
HOST_ENTER_CRITICAL();
TAILQ_INSERT_TAIL(&client_obj->dynamic.done_ctrl_xfer_tailq, urb, tailq_entry);
client_obj->dynamic.num_done_ctrl_xfer++;
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
}
static void dev_event_callback(usb_device_handle_t dev_hdl, usbh_event_t usbh_event, void *arg)
{
//Check usbh_event. The data type of event_arg depends on the type of event
switch (usbh_event) {
case USBH_EVENT_DEV_NEW: {
//Prepare a NEW_DEV client event message, the send it to all clients
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
usb_host_client_event_msg_t event_msg = {
.event = USB_HOST_CLIENT_EVENT_NEW_DEV,
.new_dev.address = dev_addr,
};
send_event_msg_to_clients(&event_msg, true, 0);
break;
}
case USBH_EVENT_DEV_GONE: {
//Prepare event msg, send only to clients that have opened the device
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
usb_host_client_event_msg_t event_msg = {
.event = USB_HOST_CLIENT_EVENT_DEV_GONE,
.dev_gone.dev_hdl = dev_hdl,
};
send_event_msg_to_clients(&event_msg, false, dev_addr);
break;
}
case USBH_EVENT_DEV_ALL_FREE: {
//Notify the lib handler that all devices are free
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.lib_event_flags |= USB_HOST_LIB_EVENT_FLAGS_ALL_FREE;
_unblock_lib(false);
HOST_EXIT_CRITICAL();
break;
}
default:
abort(); //Should never occur
break;
}
}
// ------------------- Client Related ----------------------
static bool pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr)
{
endpoint_t *ep_obj = (endpoint_t *)user_arg;
client_t *client_obj = (client_t *)ep_obj->constant.intf_obj->constant.client_obj;
HOST_ENTER_CRITICAL_SAFE();
//Store the event to be handled later. Note that we allow overwriting of events because more severe will halt the pipe prevent any further events.
ep_obj->dynamic.last_event = pipe_event;
//Add the EP to the client's pending list if it's not in the list already
if (!ep_obj->dynamic.flags.pending) {
ep_obj->dynamic.flags.pending = 1;
TAILQ_REMOVE(&client_obj->dynamic.idle_ep_tailq, ep_obj, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&client_obj->dynamic.pending_ep_tailq, ep_obj, dynamic.tailq_entry);
}
bool yield = _unblock_client(client_obj, in_isr);
HOST_EXIT_CRITICAL_SAFE();
return yield;
}
// ------------------------------------------------ Library Functions --------------------------------------------------
// ----------------------- Public --------------------------
esp_err_t usb_host_install(const usb_host_config_t *config)
{
HOST_CHECK(config != NULL, ESP_ERR_INVALID_ARG);
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj == NULL, ESP_ERR_INVALID_STATE);
HOST_EXIT_CRITICAL();
esp_err_t ret;
host_lib_t *host_lib_obj = heap_caps_calloc(1, sizeof(host_lib_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t event_sem = xSemaphoreCreateBinary();
SemaphoreHandle_t mux_lock = xSemaphoreCreateMutex();
if (host_lib_obj == NULL || event_sem == NULL || mux_lock == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
//Initialize host library object
TAILQ_INIT(&host_lib_obj->mux_protected.client_tailq);
host_lib_obj->constant.event_sem = event_sem;
host_lib_obj->constant.mux_lock = mux_lock;
//Setup the USB PHY if necessary (USB PHY driver will also enable the underlying Host Controller)
if (!config->skip_phy_setup) {
//Host Library defaults to internal PHY
usb_phy_config_t phy_config = {
.controller = USB_PHY_CTRL_OTG,
.target = USB_PHY_TARGET_INT,
.otg_mode = USB_OTG_MODE_HOST,
.otg_speed = USB_PHY_SPEED_UNDEFINED, //In Host mode, the speed is determined by the connected device
.ext_io_conf = NULL,
.otg_io_conf = NULL,
};
ret = usb_new_phy(&phy_config, &host_lib_obj->constant.phy_handle);
if (ret != ESP_OK) {
goto phy_err;
}
}
//Install USBH
usbh_config_t usbh_config = {
.notif_cb = notif_callback,
.notif_cb_arg = NULL,
.ctrl_xfer_cb = ctrl_xfer_callback,
.ctrl_xfer_cb_arg = NULL,
.event_cb = dev_event_callback,
.event_cb_arg = NULL,
.hcd_config = {
.intr_flags = config->intr_flags,
},
};
ret = usbh_install(&usbh_config);
if (ret != ESP_OK) {
goto usbh_err;
}
//Install Hub
hub_config_t hub_config = {
.notif_cb = notif_callback,
.notif_cb_arg = NULL,
};
ret = hub_install(&hub_config);
if (ret != ESP_OK) {
goto hub_err;
}
//Assign host library object
HOST_ENTER_CRITICAL();
if (p_host_lib_obj != NULL) {
HOST_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto assign_err;
}
p_host_lib_obj = host_lib_obj;
HOST_EXIT_CRITICAL();
//Start the root hub
ESP_ERROR_CHECK(hub_root_start());
ret = ESP_OK;
return ret;
assign_err:
ESP_ERROR_CHECK(hub_uninstall());
hub_err:
ESP_ERROR_CHECK(usbh_uninstall());
usbh_err:
if (host_lib_obj->constant.phy_handle) {
ESP_ERROR_CHECK(usb_del_phy(host_lib_obj->constant.phy_handle));
}
phy_err:
alloc_err:
if (mux_lock) {
vSemaphoreDelete(mux_lock);
}
if (event_sem) {
vSemaphoreDelete(event_sem);
}
heap_caps_free(host_lib_obj);
return ret;
}
esp_err_t usb_host_uninstall(void)
{
//All devices must have been freed at this point
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
HOST_CHECK_FROM_CRIT(p_host_lib_obj->dynamic.process_pending_flags == 0 &&
p_host_lib_obj->dynamic.lib_event_flags == 0 &&
p_host_lib_obj->dynamic.flags.val == 0,
ESP_ERR_INVALID_STATE);
HOST_EXIT_CRITICAL();
//Stop the root hub
ESP_ERROR_CHECK(hub_root_stop());
//Uninstall Hub and USBH
ESP_ERROR_CHECK(hub_uninstall());
ESP_ERROR_CHECK(usbh_uninstall());
HOST_ENTER_CRITICAL();
host_lib_t *host_lib_obj = p_host_lib_obj;
p_host_lib_obj = NULL;
HOST_EXIT_CRITICAL();
//If the USB PHY was setup, then delete it
if (host_lib_obj->constant.phy_handle) {
ESP_ERROR_CHECK(usb_del_phy(host_lib_obj->constant.phy_handle));
}
//Free memory objects
vSemaphoreDelete(host_lib_obj->constant.mux_lock);
vSemaphoreDelete(host_lib_obj->constant.event_sem);
heap_caps_free(host_lib_obj);
return ESP_OK;
}
esp_err_t usb_host_lib_handle_events(TickType_t timeout_ticks, uint32_t *event_flags_ret)
{
esp_err_t ret;
uint32_t event_flags = 0;
HOST_ENTER_CRITICAL();
if (!p_host_lib_obj->dynamic.flags.process_pending) {
//There is currently processing that needs to be done. Wait for some processing
HOST_EXIT_CRITICAL();
BaseType_t sem_ret = xSemaphoreTake(p_host_lib_obj->constant.event_sem, timeout_ticks);
if (sem_ret == pdFALSE) {
ret = ESP_ERR_TIMEOUT;
goto exit;
}
HOST_ENTER_CRITICAL();
}
//Read and clear process pending flags
uint32_t process_pending_flags = p_host_lib_obj->dynamic.process_pending_flags;
p_host_lib_obj->dynamic.process_pending_flags = 0;
p_host_lib_obj->dynamic.flags.handling_events = 1;
while (process_pending_flags) {
HOST_EXIT_CRITICAL();
if (process_pending_flags & PROCESS_PENDING_FLAG_USBH) {
ESP_ERROR_CHECK(usbh_process());
}
if (process_pending_flags & PROCESS_PENDING_FLAG_HUB) {
ESP_ERROR_CHECK(hub_process());
}
HOST_ENTER_CRITICAL();
//Read and clear process pending flags again, and loop back if there is more to process
process_pending_flags = p_host_lib_obj->dynamic.process_pending_flags;
p_host_lib_obj->dynamic.process_pending_flags = 0;
}
p_host_lib_obj->dynamic.flags.process_pending = 0;
p_host_lib_obj->dynamic.flags.handling_events = 0;
event_flags = p_host_lib_obj->dynamic.lib_event_flags;
p_host_lib_obj->dynamic.lib_event_flags = 0;
HOST_EXIT_CRITICAL();
ret = ESP_OK;
exit:
if (event_flags_ret != NULL) {
*event_flags_ret = event_flags;
}
return ret;
}
esp_err_t usb_host_lib_unblock(void)
{
//All devices must have been freed at this point
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
_unblock_lib(false);
HOST_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t usb_host_lib_info(usb_host_lib_info_t *info_ret)
{
HOST_CHECK(info_ret != NULL, ESP_ERR_INVALID_ARG);
int num_devs_temp;
int num_clients_temp;
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj != NULL, ESP_ERR_INVALID_STATE);
num_clients_temp = p_host_lib_obj->dynamic.flags.num_clients;
HOST_EXIT_CRITICAL();
usbh_num_devs(&num_devs_temp);
//Write back return values
info_ret->num_devices = num_devs_temp;
info_ret->num_clients = num_clients_temp;
return ESP_OK;
}
// ------------------------------------------------ Client Functions ---------------------------------------------------
// ----------------------- Private -------------------------
static void _handle_pending_ep(client_t *client_obj)
{
//Handle each EP on the pending list
while (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq)) {
//Get the next pending EP.
endpoint_t *ep_obj = TAILQ_FIRST(&client_obj->dynamic.pending_ep_tailq);
TAILQ_REMOVE(&client_obj->dynamic.pending_ep_tailq, ep_obj, dynamic.tailq_entry);
TAILQ_INSERT_TAIL(&client_obj->dynamic.idle_ep_tailq, ep_obj, dynamic.tailq_entry);
ep_obj->dynamic.flags.pending = 0;
hcd_pipe_event_t last_event = ep_obj->dynamic.last_event;
uint32_t num_urb_dequeued = 0;
HOST_EXIT_CRITICAL();
//Handle pipe event
switch (last_event) {
case HCD_PIPE_EVENT_ERROR_XFER:
case HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL:
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
case HCD_PIPE_EVENT_ERROR_STALL:
//The pipe is now stalled. Flush all pending URBs
ESP_ERROR_CHECK(hcd_pipe_command(ep_obj->constant.pipe_hdl, HCD_PIPE_CMD_FLUSH));
//All URBs in this pipe are now retired waiting to be dequeued. Fall through to dequeue them
__attribute__((fallthrough));
case HCD_PIPE_EVENT_URB_DONE: {
//Dequeue all URBs and run their transfer callback
urb_t *urb = hcd_urb_dequeue(ep_obj->constant.pipe_hdl);
while (urb != NULL) {
//Clear the transfer's inflight flag to indicate the transfer is no longer inflight
urb->usb_host_inflight = false;
urb->transfer.callback(&urb->transfer);
num_urb_dequeued++;
urb = hcd_urb_dequeue(ep_obj->constant.pipe_hdl);
}
break;
}
default:
abort(); //Should never occur
break;
}
HOST_ENTER_CRITICAL();
//Update the endpoint's number of URB's inflight
assert(num_urb_dequeued <= ep_obj->dynamic.num_urb_inflight);
ep_obj->dynamic.num_urb_inflight -= num_urb_dequeued;
}
}
// ----------------------- Public --------------------------
esp_err_t usb_host_client_register(const usb_host_client_config_t *client_config, usb_host_client_handle_t *client_hdl_ret)
{
HOST_CHECK(p_host_lib_obj, ESP_ERR_INVALID_STATE);
HOST_CHECK(client_config != NULL && client_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
HOST_CHECK(client_config->max_num_event_msg > 0, ESP_ERR_INVALID_ARG);
if (!client_config->is_synchronous) {
//Asynchronous clients must provide a
HOST_CHECK(client_config->async.client_event_callback != NULL, ESP_ERR_INVALID_ARG);
}
esp_err_t ret;
//Create client object
client_t *client_obj = heap_caps_calloc(1, sizeof(client_t), MALLOC_CAP_DEFAULT);
SemaphoreHandle_t event_sem = xSemaphoreCreateBinary();
QueueHandle_t event_msg_queue = xQueueCreate(client_config->max_num_event_msg, sizeof(usb_host_client_event_msg_t));
if (client_obj == NULL || event_sem == NULL || event_msg_queue == NULL) {
ret = ESP_ERR_NO_MEM;
goto alloc_err;
}
//Initialize client object
TAILQ_INIT(&client_obj->dynamic.pending_ep_tailq);
TAILQ_INIT(&client_obj->dynamic.idle_ep_tailq);
TAILQ_INIT(&client_obj->mux_protected.interface_tailq);
TAILQ_INIT(&client_obj->dynamic.done_ctrl_xfer_tailq);
client_obj->constant.event_sem = event_sem;
client_obj->constant.event_callback = client_config->async.client_event_callback;
client_obj->constant.callback_arg = client_config->async.callback_arg;
client_obj->constant.event_msg_queue = event_msg_queue;
//Add client to the host library's list of clients
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.num_clients++;
HOST_EXIT_CRITICAL();
TAILQ_INSERT_TAIL(&p_host_lib_obj->mux_protected.client_tailq, client_obj, dynamic.tailq_entry);
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
//Write back client handle
*client_hdl_ret = (usb_host_client_handle_t)client_obj;
ret = ESP_OK;
return ret;
alloc_err:
if (event_msg_queue) {
vQueueDelete(event_msg_queue);
}
if (event_sem) {
vSemaphoreDelete(event_sem);
}
heap_caps_free(client_obj);
return ESP_OK;
}
esp_err_t usb_host_client_deregister(usb_host_client_handle_t client_hdl)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
esp_err_t ret;
//We take the mux_lock because we need to access the host library's client_tailq
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
HOST_ENTER_CRITICAL();
//Check that client can currently deregistered
bool can_deregister;
if (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq) ||
!TAILQ_EMPTY(&client_obj->dynamic.idle_ep_tailq) ||
!TAILQ_EMPTY(&client_obj->dynamic.done_ctrl_xfer_tailq) ||
client_obj->dynamic.flags.handling_events ||
client_obj->dynamic.flags.blocked ||
client_obj->dynamic.flags.taking_mux ||
client_obj->dynamic.flags.num_intf_claimed != 0 ||
client_obj->dynamic.num_done_ctrl_xfer != 0 ||
client_obj->dynamic.opened_dev_addr_map != 0) {
can_deregister = false;
} else {
can_deregister = true;
}
HOST_EXIT_CRITICAL();
if (!can_deregister) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Remove client object from the library's list of clients
TAILQ_REMOVE(&p_host_lib_obj->mux_protected.client_tailq, client_obj, dynamic.tailq_entry);
HOST_ENTER_CRITICAL();
p_host_lib_obj->dynamic.flags.num_clients--;
if (p_host_lib_obj->dynamic.flags.num_clients == 0) {
//This is the last client being deregistered. Notify the lib handler
p_host_lib_obj->dynamic.lib_event_flags |= USB_HOST_LIB_EVENT_FLAGS_NO_CLIENTS;
_unblock_lib(false);
}
HOST_EXIT_CRITICAL();
//Free client object
vQueueDelete(client_obj->constant.event_msg_queue);
vSemaphoreDelete(client_obj->constant.event_sem);
heap_caps_free(client_obj);
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
return ret;
}
esp_err_t usb_host_client_handle_events(usb_host_client_handle_t client_hdl, TickType_t timeout_ticks)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
esp_err_t ret;
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
if (!client_obj->dynamic.flags.events_pending) {
//There are currently no events, wait for one to occur
client_obj->dynamic.flags.blocked = 1;
HOST_EXIT_CRITICAL();
BaseType_t sem_ret = xSemaphoreTake(client_obj->constant.event_sem, timeout_ticks);
HOST_ENTER_CRITICAL();
client_obj->dynamic.flags.blocked = 0;
if (sem_ret == pdFALSE) {
HOST_EXIT_CRITICAL();
//Timed out waiting for semaphore
ret = ESP_ERR_TIMEOUT;
goto exit;
}
}
//Mark that we're processing events
client_obj->dynamic.flags.handling_events = 1;
while (client_obj->dynamic.flags.handling_events) {
//Handle pending endpoints
if (!TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq)) {
_handle_pending_ep(client_obj);
}
//Handle any done control transfers
while (client_obj->dynamic.num_done_ctrl_xfer > 0) {
urb_t *urb = TAILQ_FIRST(&client_obj->dynamic.done_ctrl_xfer_tailq);
TAILQ_REMOVE(&client_obj->dynamic.done_ctrl_xfer_tailq, urb, tailq_entry);
client_obj->dynamic.num_done_ctrl_xfer--;
HOST_EXIT_CRITICAL();
//Clear the transfer's inflight flag to indicate the transfer is no longer inflight
urb->usb_host_inflight = false;
//Call the transfer's callback
urb->transfer.callback(&urb->transfer);
HOST_ENTER_CRITICAL();
}
//Handle event messages
while (uxQueueMessagesWaiting(client_obj->constant.event_msg_queue) > 0) {
HOST_EXIT_CRITICAL();
//Dequeue the event message and call the client event callback
usb_host_client_event_msg_t event_msg;
BaseType_t queue_ret = xQueueReceive(client_obj->constant.event_msg_queue, &event_msg, 0);
assert(queue_ret == pdTRUE);
client_obj->constant.event_callback(&event_msg, client_obj->constant.callback_arg);
HOST_ENTER_CRITICAL();
}
//Check each event again to see any new events occurred
if (TAILQ_EMPTY(&client_obj->dynamic.pending_ep_tailq) &&
client_obj->dynamic.num_done_ctrl_xfer == 0 &&
uxQueueMessagesWaiting(client_obj->constant.event_msg_queue) == 0) {
//All pending endpoints and event messages handled
client_obj->dynamic.flags.events_pending = 0;
client_obj->dynamic.flags.handling_events = 0;
}
}
HOST_EXIT_CRITICAL();
ret = ESP_OK;
exit:
return ret;
}
esp_err_t usb_host_client_unblock(usb_host_client_handle_t client_hdl)
{
HOST_CHECK(client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
_unblock_client(client_obj, false);
HOST_EXIT_CRITICAL();
return ESP_OK;
}
// ------------------------------------------------- Device Handling ---------------------------------------------------
esp_err_t usb_host_device_open(usb_host_client_handle_t client_hdl, uint8_t dev_addr, usb_device_handle_t *dev_hdl_ret)
{
HOST_CHECK(dev_addr > 0 && client_hdl != NULL && dev_hdl_ret != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
esp_err_t ret;
usb_device_handle_t dev_hdl;
ret = usbh_dev_open(dev_addr, &dev_hdl);
if (ret != ESP_OK) {
goto exit;
}
HOST_ENTER_CRITICAL();
if (_check_client_opened_device(client_obj, dev_addr)) {
//Client has already opened the device. Close it and return an error
ret = ESP_ERR_INVALID_STATE;
HOST_EXIT_CRITICAL();
goto already_opened;
}
//Record in client object that we have opened the device of this address
_record_client_opened_device(client_obj, dev_addr);
HOST_EXIT_CRITICAL();
*dev_hdl_ret = dev_hdl;
ret = ESP_OK;
return ret;
already_opened:
ESP_ERROR_CHECK(usbh_dev_close(dev_hdl));
exit:
return ret;
}
esp_err_t usb_host_device_close(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl)
{
HOST_CHECK(dev_hdl != NULL && client_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
//We take the lock because we need to walk the interface list
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret;
//Check that all interfaces claimed by this client do not belong to this device
bool all_released = true;
interface_t *intf_obj;
TAILQ_FOREACH(intf_obj, &client_obj->mux_protected.interface_tailq, mux_protected.tailq_entry) {
if (intf_obj->constant.dev_hdl == dev_hdl) {
all_released = false;
break;
}
}
if (!all_released) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Check that client actually opened the device in the first place
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_NOT_FOUND);
if (!_check_client_opened_device(client_obj, dev_addr)) {
//Client never opened this device
ret = ESP_ERR_INVALID_STATE;
HOST_EXIT_CRITICAL();
goto exit;
}
//Proceed to clear the record of the device form the client
_clear_client_opened_device(client_obj, dev_addr);
HOST_EXIT_CRITICAL();
ESP_ERROR_CHECK(usbh_dev_close(dev_hdl));
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
return ret;
}
esp_err_t usb_host_device_free_all(void)
{
HOST_ENTER_CRITICAL();
HOST_CHECK_FROM_CRIT(p_host_lib_obj->dynamic.flags.num_clients == 0, ESP_ERR_INVALID_STATE); //All clients must have been deregistered
HOST_EXIT_CRITICAL();
esp_err_t ret;
ret = usbh_dev_mark_all_free();
//If ESP_ERR_NOT_FINISHED is returned, caller must wait for USB_HOST_LIB_EVENT_FLAGS_ALL_FREE to confirm all devices are free
return ret;
}
esp_err_t usb_host_device_addr_list_fill(int list_len, uint8_t *dev_addr_list, int *num_dev_ret)
{
HOST_CHECK(dev_addr_list != NULL && num_dev_ret != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_addr_list_fill(list_len, dev_addr_list, num_dev_ret);
}
// ------------------------------------------------- Device Requests ---------------------------------------------------
// ------------------- Cached Requests ---------------------
esp_err_t usb_host_device_info(usb_device_handle_t dev_hdl, usb_device_info_t *dev_info)
{
HOST_CHECK(dev_hdl != NULL && dev_info != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_info(dev_hdl, dev_info);
}
// ----------------------------------------------- Descriptor Requests -------------------------------------------------
// ----------------- Cached Descriptors --------------------
esp_err_t usb_host_get_device_descriptor(usb_device_handle_t dev_hdl, const usb_device_desc_t **device_desc)
{
HOST_CHECK(dev_hdl != NULL && device_desc != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_desc(dev_hdl, device_desc);
}
esp_err_t usb_host_get_active_config_descriptor(usb_device_handle_t dev_hdl, const usb_config_desc_t **config_desc)
{
HOST_CHECK(dev_hdl != NULL && config_desc != NULL, ESP_ERR_INVALID_ARG);
return usbh_dev_get_config_desc(dev_hdl, config_desc);
}
// ----------------------------------------------- Interface Functions -------------------------------------------------
// ----------------------- Private -------------------------
static esp_err_t endpoint_alloc(usb_device_handle_t dev_hdl, const usb_ep_desc_t *ep_desc, interface_t *intf_obj, endpoint_t **ep_obj_ret)
{
endpoint_t *ep_obj = heap_caps_calloc(1, sizeof(endpoint_t), MALLOC_CAP_DEFAULT);
if (ep_obj == NULL) {
return ESP_ERR_NO_MEM;
}
esp_err_t ret;
usbh_ep_config_t ep_config = {
.ep_desc = ep_desc,
.pipe_cb = pipe_callback,
.pipe_cb_arg = (void *)ep_obj,
.context = (void *)ep_obj,
};
hcd_pipe_handle_t pipe_hdl;
ret = usbh_ep_alloc(dev_hdl, &ep_config, &pipe_hdl);
if (ret != ESP_OK) {
goto ep_alloc_err;
}
//Initialize endpoint object
ep_obj->constant.pipe_hdl = pipe_hdl;
ep_obj->constant.ep_desc = ep_desc;
ep_obj->constant.intf_obj = intf_obj;
//Write back result
*ep_obj_ret = ep_obj;
ret = ESP_OK;
return ret;
ep_alloc_err:
heap_caps_free(ep_obj);
return ret;
}
static void endpoint_free(usb_device_handle_t dev_hdl, endpoint_t *ep_obj)
{
if (ep_obj == NULL) {
return;
}
//Free the underlying endpoint
ESP_ERROR_CHECK(usbh_ep_free(dev_hdl, ep_obj->constant.ep_desc->bEndpointAddress));
//Free the endpoint object
heap_caps_free(ep_obj);
}
static interface_t *interface_alloc(client_t *client_obj, usb_device_handle_t dev_hdl, const usb_intf_desc_t *intf_desc)
{
interface_t *intf_obj = heap_caps_calloc(1, sizeof(interface_t) + (sizeof(endpoint_t *) * intf_desc->bNumEndpoints), MALLOC_CAP_DEFAULT);
if (intf_obj == NULL) {
return NULL;
}
intf_obj->constant.intf_desc = intf_desc;
intf_obj->constant.client_obj = client_obj;
intf_obj->constant.dev_hdl = dev_hdl;
return intf_obj;
}
static void interface_free(interface_t *intf_obj)
{
if (intf_obj == NULL) {
return;
}
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
assert(intf_obj->constant.endpoints[i] == NULL);
}
heap_caps_free(intf_obj);
}
static esp_err_t interface_claim(client_t *client_obj, usb_device_handle_t dev_hdl, const usb_config_desc_t *config_desc, uint8_t bInterfaceNumber, uint8_t bAlternateSetting, interface_t **intf_obj_ret)
{
esp_err_t ret;
//We need to walk to configuration descriptor to find the correct interface descriptor, and each of its constituent endpoint descriptors
//Find the interface descriptor and allocate the interface object
int offset_intf;
const usb_intf_desc_t *intf_desc = usb_parse_interface_descriptor(config_desc, bInterfaceNumber, bAlternateSetting, &offset_intf);
if (intf_desc == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
//Allocate interface object
interface_t *intf_obj = interface_alloc(client_obj, dev_hdl, intf_desc);
if (intf_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto exit;
}
//Find each endpoint descriptor in the interface by index, and allocate those endpoints
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
int offset_ep = offset_intf;
const usb_ep_desc_t *ep_desc = usb_parse_endpoint_descriptor_by_index(intf_desc, i, config_desc->wTotalLength, &offset_ep);
if (ep_desc == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto ep_alloc_err;
}
//Allocate the endpoint
endpoint_t *ep_obj;
ret = endpoint_alloc(dev_hdl, ep_desc, intf_obj, &ep_obj);
if (ret != ESP_OK) {
goto ep_alloc_err;
}
//Fill the interface object with the allocated endpoints
intf_obj->constant.endpoints[i] = ep_obj;
}
//Add interface object to client (safe because we have already taken the mutex)
TAILQ_INSERT_TAIL(&client_obj->mux_protected.interface_tailq, intf_obj, mux_protected.tailq_entry);
//Add each endpoint to the client's endpoint list
HOST_ENTER_CRITICAL();
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
TAILQ_INSERT_TAIL(&client_obj->dynamic.idle_ep_tailq, intf_obj->constant.endpoints[i], dynamic.tailq_entry);
}
HOST_EXIT_CRITICAL();
//Write back result
*intf_obj_ret = intf_obj;
ret = ESP_OK;
return ret;
ep_alloc_err:
for (int i = 0; i < intf_desc->bNumEndpoints; i++) {
endpoint_free(dev_hdl, intf_obj->constant.endpoints[i]);
intf_obj->constant.endpoints[i] = NULL;
}
interface_free(intf_obj);
exit:
return ret;
}
static esp_err_t interface_release(client_t *client_obj, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber)
{
esp_err_t ret;
//Find the interface object
interface_t *intf_obj_iter;
interface_t *intf_obj = NULL;
TAILQ_FOREACH(intf_obj_iter, &client_obj->mux_protected.interface_tailq, mux_protected.tailq_entry) {
if (intf_obj_iter->constant.dev_hdl == dev_hdl && intf_obj_iter->constant.intf_desc->bInterfaceNumber == bInterfaceNumber) {
intf_obj = intf_obj_iter;
break;
}
}
if (intf_obj == NULL) {
ret = ESP_ERR_NOT_FOUND;
goto exit;
}
//Check that all endpoints in the interface are in a state to be freed
HOST_ENTER_CRITICAL();
bool can_free = true;
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
endpoint_t *ep_obj = intf_obj->constant.endpoints[i];
//Endpoint must not be on the pending list and must not have inflight URBs
if (ep_obj->dynamic.num_urb_inflight != 0 || ep_obj->dynamic.flags.pending) {
can_free = false;
break;
}
}
if (!can_free) {
HOST_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Proceed to remove all endpoint objects from list
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
TAILQ_REMOVE(&client_obj->dynamic.idle_ep_tailq, intf_obj->constant.endpoints[i], dynamic.tailq_entry);
}
HOST_EXIT_CRITICAL();
//Remove the interface object from the list (safe because we have already taken the mutex)
TAILQ_REMOVE(&client_obj->mux_protected.interface_tailq, intf_obj, mux_protected.tailq_entry);
//Free each endpoint in the interface
for (int i = 0; i < intf_obj->constant.intf_desc->bNumEndpoints; i++) {
endpoint_free(dev_hdl, intf_obj->constant.endpoints[i]);
intf_obj->constant.endpoints[i] = NULL;
}
//Free the interface object itself
interface_free(intf_obj);
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t usb_host_interface_claim(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber, uint8_t bAlternateSetting)
{
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
//Check if client actually opened device
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_INVALID_STATE);
client_obj->dynamic.flags.taking_mux = 1;
HOST_EXIT_CRITICAL();
//Take mux lock. This protects the client being released or other clients from claiming interfaces
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret;
const usb_config_desc_t *config_desc;
ESP_ERROR_CHECK(usbh_dev_get_config_desc(dev_hdl, &config_desc));
interface_t *intf_obj;
//Claim interface
ret = interface_claim(client_obj, dev_hdl, config_desc, bInterfaceNumber, bAlternateSetting, &intf_obj);
if (ret != ESP_OK) {
goto exit;
}
ret = ESP_OK;
exit:
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
HOST_ENTER_CRITICAL();
if (ret == ESP_OK) {
client_obj->dynamic.flags.num_intf_claimed++;
}
client_obj->dynamic.flags.taking_mux = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_interface_release(usb_host_client_handle_t client_hdl, usb_device_handle_t dev_hdl, uint8_t bInterfaceNumber)
{
HOST_CHECK(client_hdl != NULL && dev_hdl != NULL, ESP_ERR_INVALID_ARG);
client_t *client_obj = (client_t *)client_hdl;
HOST_ENTER_CRITICAL();
uint8_t dev_addr;
ESP_ERROR_CHECK(usbh_dev_get_addr(dev_hdl, &dev_addr));
//Check if client actually opened device
HOST_CHECK_FROM_CRIT(_check_client_opened_device(client_obj, dev_addr), ESP_ERR_INVALID_STATE);
client_obj->dynamic.flags.taking_mux = 1;
HOST_EXIT_CRITICAL();
//Take mux lock. This protects the client being released or other clients from claiming interfaces
xSemaphoreTake(p_host_lib_obj->constant.mux_lock, portMAX_DELAY);
esp_err_t ret = interface_release(client_obj, dev_hdl, bInterfaceNumber);
xSemaphoreGive(p_host_lib_obj->constant.mux_lock);
HOST_ENTER_CRITICAL();
if (ret == ESP_OK) {
client_obj->dynamic.flags.num_intf_claimed--;
}
client_obj->dynamic.flags.taking_mux = 0;
HOST_EXIT_CRITICAL();
return ret;
}
esp_err_t usb_host_endpoint_halt(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
endpoint_t *ep_obj = NULL;
ret = usbh_ep_get_context(dev_hdl, bEndpointAddress, (void **)&ep_obj);
if (ret != ESP_OK) {
goto exit;
}
assert(ep_obj != NULL);
ret = hcd_pipe_command(ep_obj->constant.pipe_hdl, HCD_PIPE_CMD_HALT);
exit:
return ret;
}
esp_err_t usb_host_endpoint_flush(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
endpoint_t *ep_obj = NULL;
ret = usbh_ep_get_context(dev_hdl, bEndpointAddress, (void **)&ep_obj);
if (ret != ESP_OK) {
goto exit;
}
assert(ep_obj != NULL);
ret = hcd_pipe_command(ep_obj->constant.pipe_hdl, HCD_PIPE_CMD_FLUSH);
exit:
return ret;
}
esp_err_t usb_host_endpoint_clear(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress)
{
esp_err_t ret;
endpoint_t *ep_obj = NULL;
ret = usbh_ep_get_context(dev_hdl, bEndpointAddress, (void **)&ep_obj);
if (ret != ESP_OK) {
goto exit;
}
assert(ep_obj != NULL);
ret = hcd_pipe_command(ep_obj->constant.pipe_hdl, HCD_PIPE_CMD_CLEAR);
exit:
return ret;
}
// ------------------------------------------------ Asynchronous I/O ---------------------------------------------------
// ----------------------- Private -------------------------
static bool transfer_check(usb_transfer_t *transfer, usb_transfer_type_t type, int mps, bool is_in)
{
if (transfer->callback == NULL) {
ESP_LOGE(USB_HOST_TAG, "Transfer callback is NULL");
return false;
}
//Check that the total transfer length does not exceed data buffer size
if (transfer->num_bytes > transfer->data_buffer_size) {
ESP_LOGE(USB_HOST_TAG, "Transfer num_bytes > data_buffer_size");
return false;
}
if (type == USB_TRANSFER_TYPE_CTRL) {
//Check that num_bytes and wLength are set correctly
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
if (transfer->num_bytes != sizeof(usb_setup_packet_t) + setup_pkt->wLength) {
ESP_LOGE(USB_HOST_TAG, "Control transfer num_bytes wLength mismatch");
return false;
}
} else if (type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
//Check that there is at least one isochronous packet descriptor
if (transfer->num_isoc_packets <= 0) {
ESP_LOGE(USB_HOST_TAG, "ISOC transfer has 0 packet descriptors");
return false;
}
//Check that sum of all packet lengths add up to transfer length
//If IN, check that each packet length is integer multiple of MPS
int total_num_bytes = 0;
bool mod_mps_all_zero = true;
for (int i = 0; i < transfer->num_isoc_packets; i++) {
total_num_bytes += transfer->isoc_packet_desc[i].num_bytes;
if (transfer->isoc_packet_desc[i].num_bytes % mps != 0) {
mod_mps_all_zero = false;
}
}
if (transfer->num_bytes != total_num_bytes) {
ESP_LOGE(USB_HOST_TAG, "ISOC transfer num_bytes not equal to total num_bytes of all packets");
return false;
}
if (is_in && !mod_mps_all_zero) {
ESP_LOGE(USB_HOST_TAG, "ISOC IN transfer all packets num_bytes must be integer multiple of MPS");
return false;
}
} else {
//Check that IN transfers are integer multiple of MPS
if (is_in && (transfer->num_bytes % mps != 0)) {
ESP_LOGE(USB_HOST_TAG, "IN transfer num_bytes must be integer multiple of MPS");
return false;
}
}
return true;
}
// ----------------------- Public --------------------------
esp_err_t usb_host_transfer_alloc(size_t data_buffer_size, int num_isoc_packets, usb_transfer_t **transfer)
{
urb_t *urb = urb_alloc(data_buffer_size, 0, num_isoc_packets);
if (urb == NULL) {
return ESP_ERR_NO_MEM;
}
*transfer = &urb->transfer;
return ESP_OK;
}
esp_err_t usb_host_transfer_free(usb_transfer_t *transfer)
{
if (transfer == NULL) {
return ESP_OK;
}
urb_t *urb = __containerof(transfer, urb_t, transfer);
urb_free(urb);
return ESP_OK;
}
esp_err_t usb_host_transfer_submit(usb_transfer_t *transfer)
{
HOST_CHECK(transfer != NULL, ESP_ERR_INVALID_ARG);
//Check that transfer and target endpoint are valid
HOST_CHECK(transfer->device_handle != NULL, ESP_ERR_INVALID_ARG); //Target device must be set
HOST_CHECK((transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) != 0, ESP_ERR_INVALID_ARG);
endpoint_t *ep_obj = NULL;
urb_t *urb_obj = __containerof(transfer, urb_t, transfer);
esp_err_t ret;
ret = usbh_ep_get_context(transfer->device_handle, transfer->bEndpointAddress, (void **)&ep_obj);
if (ret != ESP_OK) {
goto err;
}
assert(ep_obj != NULL);
HOST_CHECK(transfer_check(transfer,
USB_EP_DESC_GET_XFERTYPE(ep_obj->constant.ep_desc),
USB_EP_DESC_GET_MPS(ep_obj->constant.ep_desc),
transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK), ESP_ERR_INVALID_ARG);
//Check that we are not submitting a transfer already inflight
HOST_CHECK(!urb_obj->usb_host_inflight, ESP_ERR_NOT_FINISHED);
urb_obj->usb_host_inflight = true;
HOST_ENTER_CRITICAL();
ep_obj->dynamic.num_urb_inflight++;
HOST_EXIT_CRITICAL();
//Check if pipe is in a state to enqueue URBs
if (hcd_pipe_get_state(ep_obj->constant.pipe_hdl) != HCD_PIPE_STATE_ACTIVE) {
ret = ESP_ERR_INVALID_STATE;
goto hcd_err;
}
ret = hcd_urb_enqueue(ep_obj->constant.pipe_hdl, urb_obj);
if (ret != ESP_OK) {
goto hcd_err;
}
ret = ESP_OK;
return ret;
hcd_err:
HOST_ENTER_CRITICAL();
ep_obj->dynamic.num_urb_inflight--;
HOST_EXIT_CRITICAL();
urb_obj->usb_host_inflight = false;
err:
return ret;
}
esp_err_t usb_host_transfer_submit_control(usb_host_client_handle_t client_hdl, usb_transfer_t *transfer)
{
HOST_CHECK(client_hdl != NULL && transfer != NULL, ESP_ERR_INVALID_ARG);
//Check that control transfer is valid
HOST_CHECK(transfer->device_handle != NULL, ESP_ERR_INVALID_ARG); //Target device must be set
usb_device_handle_t dev_hdl = transfer->device_handle;
bool xfer_is_in = ((usb_setup_packet_t *)transfer->data_buffer)->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN;
usb_device_info_t dev_info;
ESP_ERROR_CHECK(usbh_dev_get_info(dev_hdl, &dev_info));
HOST_CHECK(transfer_check(transfer, USB_TRANSFER_TYPE_CTRL, dev_info.bMaxPacketSize0, xfer_is_in), ESP_ERR_INVALID_ARG);
//Control transfers must be targeted at EP 0
HOST_CHECK((transfer->bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) == 0, ESP_ERR_INVALID_ARG);
urb_t *urb_obj = __containerof(transfer, urb_t, transfer);
//Check that we are not submitting a transfer already inflight
HOST_CHECK(!urb_obj->usb_host_inflight, ESP_ERR_NOT_FINISHED);
urb_obj->usb_host_inflight = true;
//Save client handle into URB
urb_obj->usb_host_client = (void *)client_hdl;
esp_err_t ret;
ret = usbh_dev_submit_ctrl_urb(dev_hdl, urb_obj);
if (ret != ESP_OK) {
urb_obj->usb_host_inflight = false;
}
return ret;
}