kopia lustrzana https://github.com/espressif/esp-idf
514 wiersze
16 KiB
C
514 wiersze
16 KiB
C
/*
|
|
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
|
|
* Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "sdmmc_common.h"
|
|
|
|
static const char* TAG = "sdmmc_cmd";
|
|
|
|
|
|
esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
|
|
{
|
|
if (card->host.command_timeout_ms != 0) {
|
|
cmd->timeout_ms = card->host.command_timeout_ms;
|
|
} else if (cmd->timeout_ms == 0) {
|
|
cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
|
|
}
|
|
|
|
int slot = card->host.slot;
|
|
ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d timeout=%d",
|
|
slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen, cmd->timeout_ms);
|
|
esp_err_t err = (*card->host.do_transaction)(slot, cmd);
|
|
if (err != 0) {
|
|
ESP_LOGD(TAG, "cmd=%d, sdmmc_req_run returned 0x%x", cmd->opcode, err);
|
|
return err;
|
|
}
|
|
int state = MMC_R1_CURRENT_STATE(cmd->response);
|
|
ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
|
|
cmd->response[0],
|
|
cmd->response[1],
|
|
cmd->response[2],
|
|
cmd->response[3],
|
|
cmd->error,
|
|
state);
|
|
return cmd->error;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
|
|
{
|
|
sdmmc_command_t app_cmd = {
|
|
.opcode = MMC_APP_CMD,
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1,
|
|
.arg = MMC_ARG_RCA(card->rca),
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
// Check APP_CMD status bit (only in SD mode)
|
|
if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
|
|
ESP_LOGW(TAG, "card doesn't support APP_CMD");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
return sdmmc_send_cmd(card, cmd);
|
|
}
|
|
|
|
|
|
esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_GO_IDLE_STATE,
|
|
.flags = SCF_CMD_BC | SCF_RSP_R0,
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (host_is_spi(card)) {
|
|
/* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
|
|
* SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
|
|
* so don't expect the above command to succeed.
|
|
* SCF_RSP_R1 flag below tells the lower layer to expect correct R1
|
|
* response (in SPI mode).
|
|
*/
|
|
(void) err;
|
|
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
|
|
|
|
cmd.flags |= SCF_RSP_R1;
|
|
err = sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
if (err == ESP_OK) {
|
|
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
|
|
esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
|
|
{
|
|
const uint8_t pattern = 0xaa; /* any pattern will do here */
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_SEND_IF_COND,
|
|
.arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R7,
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint8_t response = cmd.response[0] & 0xff;
|
|
if (response != pattern) {
|
|
ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
|
|
{
|
|
esp_err_t err;
|
|
|
|
sdmmc_command_t cmd = {
|
|
.arg = ocr,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R3,
|
|
.opcode = SD_APP_OP_COND
|
|
};
|
|
int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
|
|
int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
|
|
for (; nretries != 0; --nretries) {
|
|
bzero(&cmd, sizeof cmd);
|
|
cmd.arg = ocr;
|
|
cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
|
|
if (!card->is_mmc) { /* SD mode */
|
|
cmd.opcode = SD_APP_OP_COND;
|
|
err = sdmmc_send_app_cmd(card, &cmd);
|
|
} else { /* MMC mode */
|
|
cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
|
|
cmd.arg |= MMC_OCR_SECTOR_MODE;
|
|
cmd.opcode = MMC_SEND_OP_COND;
|
|
err = sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
if (err != ESP_OK) {
|
|
if (--err_cnt == 0) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
|
|
return err;
|
|
} else {
|
|
ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
|
|
continue;
|
|
}
|
|
}
|
|
// In SD protocol, card sets MEM_READY bit in OCR when it is ready.
|
|
// In SPI protocol, card clears IDLE_STATE bit in R1 response.
|
|
if (!host_is_spi(card)) {
|
|
if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
|
|
ocr == 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
vTaskDelay(10 / portTICK_PERIOD_MS);
|
|
}
|
|
if (nretries == 0) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
if (ocrp) {
|
|
*ocrp = MMC_R3(cmd.response);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
|
|
{
|
|
assert(ocrp);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_READ_OCR,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R2
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
*ocrp = SD_SPI_R3(cmd.response);
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
|
|
{
|
|
assert(out_raw_cid);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_ALL_SEND_CID,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R2
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
|
|
{
|
|
assert(out_cid);
|
|
assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
|
|
assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
|
|
sdmmc_response_t buf;
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SEND_CID,
|
|
.flags = SCF_CMD_READ | SCF_CMD_ADTC,
|
|
.arg = 0,
|
|
.data = &buf[0],
|
|
.datalen = sizeof(buf)
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
sdmmc_flip_byte_order(buf, sizeof(buf));
|
|
return sdmmc_decode_cid(buf, out_cid);
|
|
}
|
|
|
|
|
|
esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
|
|
{
|
|
assert(out_rca);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_SEND_RELATIVE_ADDR,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R6
|
|
};
|
|
|
|
/* MMC cards expect us to set the RCA.
|
|
* Set RCA to 1 since we don't support multiple cards on the same bus, for now.
|
|
*/
|
|
uint16_t mmc_rca = 1;
|
|
if (card->is_mmc) {
|
|
cmd.arg = MMC_ARG_RCA(mmc_rca);
|
|
}
|
|
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
*out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SET_BLOCKLEN,
|
|
.arg = csd->sector_size,
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1
|
|
};
|
|
return sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
|
|
{
|
|
/* The trick with SEND_CSD is that in SPI mode, it acts as a data read
|
|
* command, while in SD mode it is an AC command with R2 response.
|
|
*/
|
|
sdmmc_response_t spi_buf;
|
|
const bool is_spi = host_is_spi(card);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SEND_CSD,
|
|
.arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
|
|
.flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
|
|
(SCF_CMD_AC | SCF_RSP_R2),
|
|
.data = is_spi ? &spi_buf[0] : 0,
|
|
.datalen = is_spi ? sizeof(spi_buf) : 0,
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint32_t* ptr = cmd.response;
|
|
if (is_spi) {
|
|
sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
|
|
ptr = spi_buf;
|
|
}
|
|
if (card->is_mmc) {
|
|
err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
|
|
} else {
|
|
err = sdmmc_decode_csd(ptr, out_csd);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
|
|
{
|
|
/* Don't expect to see a response when de-selecting a card */
|
|
uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SELECT_CARD,
|
|
.arg = MMC_ARG_RCA(rca),
|
|
.flags = SCF_CMD_AC | response
|
|
};
|
|
return sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
|
|
{
|
|
size_t datalen = 8;
|
|
uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
|
|
if (buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
sdmmc_command_t cmd = {
|
|
.data = buf,
|
|
.datalen = datalen,
|
|
.blklen = datalen,
|
|
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
|
|
.opcode = SD_APP_SEND_SCR
|
|
};
|
|
esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
|
|
if (err == ESP_OK) {
|
|
err = sdmmc_decode_scr(buf, out_scr);
|
|
}
|
|
free(buf);
|
|
return err;
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_APP_SET_BUS_WIDTH,
|
|
.flags = SCF_RSP_R1 | SCF_CMD_AC,
|
|
.arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
|
|
};
|
|
|
|
return sdmmc_send_app_cmd(card, &cmd);
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
|
|
{
|
|
assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_CRC_ON_OFF,
|
|
.arg = crc_enable ? 1 : 0,
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1
|
|
};
|
|
return sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SEND_STATUS,
|
|
.arg = MMC_ARG_RCA(card->rca),
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (out_status) {
|
|
*out_status = MMC_R1(cmd.response);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
size_t block_size = card->csd.sector_size;
|
|
if (esp_ptr_dma_capable(src) && (intptr_t)src % 4 == 0) {
|
|
err = sdmmc_write_sectors_dma(card, src, start_block, block_count);
|
|
} else {
|
|
// SDMMC peripheral needs DMA-capable buffers. Split the write into
|
|
// separate single block writes, if needed, and allocate a temporary
|
|
// DMA-capable buffer.
|
|
void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
|
|
if (tmp_buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
const uint8_t* cur_src = (const uint8_t*) src;
|
|
for (size_t i = 0; i < block_count; ++i) {
|
|
memcpy(tmp_buf, cur_src, block_size);
|
|
cur_src += block_size;
|
|
err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
|
|
__func__, err, start_block, i);
|
|
break;
|
|
}
|
|
}
|
|
free(tmp_buf);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
if (start_block + block_count > card->csd.capacity) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
size_t block_size = card->csd.sector_size;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_ADTC | SCF_RSP_R1,
|
|
.blklen = block_size,
|
|
.data = (void*) src,
|
|
.datalen = block_count * block_size,
|
|
.timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
|
|
};
|
|
if (block_count == 1) {
|
|
cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
|
|
} else {
|
|
cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
|
|
}
|
|
if (card->ocr & SD_OCR_SDHC_CAP) {
|
|
cmd.arg = start_block;
|
|
} else {
|
|
cmd.arg = start_block * block_size;
|
|
}
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
uint32_t status = 0;
|
|
size_t count = 0;
|
|
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
|
|
// TODO: add some timeout here
|
|
err = sdmmc_send_cmd_send_status(card, &status);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (++count % 10 == 0) {
|
|
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
size_t block_size = card->csd.sector_size;
|
|
if (esp_ptr_dma_capable(dst) && (intptr_t)dst % 4 == 0) {
|
|
err = sdmmc_read_sectors_dma(card, dst, start_block, block_count);
|
|
} else {
|
|
// SDMMC peripheral needs DMA-capable buffers. Split the read into
|
|
// separate single block reads, if needed, and allocate a temporary
|
|
// DMA-capable buffer.
|
|
void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
|
|
if (tmp_buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
uint8_t* cur_dst = (uint8_t*) dst;
|
|
for (size_t i = 0; i < block_count; ++i) {
|
|
err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
|
|
__func__, err, start_block, i);
|
|
break;
|
|
}
|
|
memcpy(cur_dst, tmp_buf, block_size);
|
|
cur_dst += block_size;
|
|
}
|
|
free(tmp_buf);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
if (start_block + block_count > card->csd.capacity) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
size_t block_size = card->csd.sector_size;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
|
|
.blklen = block_size,
|
|
.data = (void*) dst,
|
|
.datalen = block_count * block_size
|
|
};
|
|
if (block_count == 1) {
|
|
cmd.opcode = MMC_READ_BLOCK_SINGLE;
|
|
} else {
|
|
cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
|
|
}
|
|
if (card->ocr & SD_OCR_SDHC_CAP) {
|
|
cmd.arg = start_block;
|
|
} else {
|
|
cmd.arg = start_block * block_size;
|
|
}
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
uint32_t status = 0;
|
|
size_t count = 0;
|
|
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
|
|
// TODO: add some timeout here
|
|
err = sdmmc_send_cmd_send_status(card, &status);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (++count % 10 == 0) {
|
|
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|