esp-idf/components/heap/multi_heap.c

377 wiersze
10 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/cdefs.h>
#include "heap_tlsf.h"
#include <multi_heap.h>
#include "multi_heap_internal.h"
/* Note: Keep platform-specific parts in this header, this source
file should depend on libc only */
#include "multi_heap_platform.h"
/* Defines compile-time configuration macros */
#include "multi_heap_config.h"
#ifndef MULTI_HEAP_POISONING
/* if no heap poisoning, public API aliases directly to these implementations */
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size)
__attribute__((alias("multi_heap_malloc_impl")));
void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment)
__attribute__((alias("multi_heap_aligned_alloc_impl")));
void multi_heap_aligned_free(multi_heap_handle_t heap, void *p)
__attribute__((alias("multi_heap_free_impl")));
void multi_heap_free(multi_heap_handle_t heap, void *p)
__attribute__((alias("multi_heap_free_impl")));
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size)
__attribute__((alias("multi_heap_realloc_impl")));
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p)
__attribute__((alias("multi_heap_get_allocated_size_impl")));
multi_heap_handle_t multi_heap_register(void *start, size_t size)
__attribute__((alias("multi_heap_register_impl")));
void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info)
__attribute__((alias("multi_heap_get_info_impl")));
size_t multi_heap_free_size(multi_heap_handle_t heap)
__attribute__((alias("multi_heap_free_size_impl")));
size_t multi_heap_minimum_free_size(multi_heap_handle_t heap)
__attribute__((alias("multi_heap_minimum_free_size_impl")));
void *multi_heap_get_block_address(multi_heap_block_handle_t block)
__attribute__((alias("multi_heap_get_block_address_impl")));
void *multi_heap_get_block_owner(multi_heap_block_handle_t block)
{
return NULL;
}
#endif
#define ALIGN(X) ((X) & ~(sizeof(void *)-1))
#define ALIGN_UP(X) ALIGN((X)+sizeof(void *)-1)
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
typedef struct multi_heap_info {
void *lock;
size_t free_bytes;
size_t minimum_free_bytes;
size_t pool_size;
tlsf_t heap_data;
} heap_t;
/* Return true if this block is free. */
static inline bool is_free(const block_header_t *block)
{
return ((block->size & 0x01) != 0);
}
/* Data size of the block (excludes this block's header) */
static inline size_t block_data_size(const block_header_t *block)
{
return (block->size & ~0x03);
}
/* Check a block is valid for this heap. Used to verify parameters. */
static void assert_valid_block(const heap_t *heap, const block_header_t *block)
{
pool_t pool = tlsf_get_pool(heap->heap_data);
void *ptr = block_to_ptr(block);
MULTI_HEAP_ASSERT((ptr >= pool) &&
(ptr < pool + heap->pool_size),
(uintptr_t)ptr);
}
void *multi_heap_get_block_address_impl(multi_heap_block_handle_t block)
{
void *ptr = block_to_ptr(block);
return (ptr);
}
size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p)
{
return tlsf_block_size(p);
}
multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
{
assert(start_ptr);
if(size < (tlsf_size() + tlsf_block_size_min() + sizeof(heap_t))) {
//Region too small to be a heap.
return NULL;
}
heap_t *result = (heap_t *)start_ptr;
size -= sizeof(heap_t);
result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size);
if(!result->heap_data) {
return NULL;
}
result->lock = NULL;
result->free_bytes = size - tlsf_size();
result->pool_size = size;
result->minimum_free_bytes = result->free_bytes;
return result;
}
void multi_heap_set_lock(multi_heap_handle_t heap, void *lock)
{
heap->lock = lock;
}
void inline multi_heap_internal_lock(multi_heap_handle_t heap)
{
MULTI_HEAP_LOCK(heap->lock);
}
void inline multi_heap_internal_unlock(multi_heap_handle_t heap)
{
MULTI_HEAP_UNLOCK(heap->lock);
}
multi_heap_block_handle_t multi_heap_get_first_block(multi_heap_handle_t heap)
{
assert(heap != NULL);
pool_t pool = tlsf_get_pool(heap->heap_data);
block_header_t* block = offset_to_block(pool, -(int)block_header_overhead);
return (multi_heap_block_handle_t)block;
}
multi_heap_block_handle_t multi_heap_get_next_block(multi_heap_handle_t heap, multi_heap_block_handle_t block)
{
assert(heap != NULL);
assert_valid_block(heap, block);
block_header_t* next = block_next(block);
if(block_data_size(next) == 0) {
//Last block:
return NULL;
} else {
return (multi_heap_block_handle_t)next;
}
}
bool multi_heap_is_free(multi_heap_block_handle_t block)
{
return is_free(block);
}
void *multi_heap_malloc_impl(multi_heap_handle_t heap, size_t size)
{
if (size == 0 || heap == NULL) {
return NULL;
}
multi_heap_internal_lock(heap);
void *result = tlsf_malloc(heap->heap_data, size);
if(result) {
heap->free_bytes -= tlsf_block_size(result);
if (heap->free_bytes < heap->minimum_free_bytes) {
heap->minimum_free_bytes = heap->free_bytes;
}
}
multi_heap_internal_unlock(heap);
return result;
}
void multi_heap_free_impl(multi_heap_handle_t heap, void *p)
{
if (heap == NULL || p == NULL) {
return;
}
assert_valid_block(heap, p);
multi_heap_internal_lock(heap);
heap->free_bytes += tlsf_block_size(p);
tlsf_free(heap->heap_data, p);
multi_heap_internal_unlock(heap);
}
void *multi_heap_realloc_impl(multi_heap_handle_t heap, void *p, size_t size)
{
assert(heap != NULL);
if (p == NULL) {
return multi_heap_malloc_impl(heap, size);
}
assert_valid_block(heap, p);
if (heap == NULL) {
return NULL;
}
multi_heap_internal_lock(heap);
size_t previous_block_size = tlsf_block_size(p);
void *result = tlsf_realloc(heap->heap_data, p, size);
if(result) {
heap->free_bytes += previous_block_size;
heap->free_bytes -= tlsf_block_size(result);
if (heap->free_bytes < heap->minimum_free_bytes) {
heap->minimum_free_bytes = heap->free_bytes;
}
}
multi_heap_internal_unlock(heap);
return result;
}
void *multi_heap_aligned_alloc_impl_offs(multi_heap_handle_t heap, size_t size, size_t alignment, size_t offset)
{
if(heap == NULL) {
return NULL;
}
if(!size) {
return NULL;
}
//Alignment must be a power of two:
if(((alignment & (alignment - 1)) != 0) ||(!alignment)) {
return NULL;
}
multi_heap_internal_lock(heap);
void *result = tlsf_memalign_offs(heap->heap_data, alignment, size, offset);
if(result) {
heap->free_bytes -= tlsf_block_size(result);
if(heap->free_bytes < heap->minimum_free_bytes) {
heap->minimum_free_bytes = heap->free_bytes;
}
}
multi_heap_internal_unlock(heap);
return result;
}
void *multi_heap_aligned_alloc_impl(multi_heap_handle_t heap, size_t size, size_t alignment)
{
return multi_heap_aligned_alloc_impl_offs(heap, size, alignment, 0);
}
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors)
{
(void)print_errors;
bool valid = true;
assert(heap != NULL);
multi_heap_internal_lock(heap);
if(tlsf_check(heap->heap_data)) {
valid = false;
}
if(tlsf_check_pool(tlsf_get_pool(heap->heap_data))) {
valid = false;
}
multi_heap_internal_unlock(heap);
return valid;
}
static void multi_heap_dump_tlsf(void* ptr, size_t size, int used, void* user)
{
(void)user;
MULTI_HEAP_STDERR_PRINTF("Block %p data, size: %d bytes, Free: %s \n",
(void *)ptr,
size,
used ? "No" : "Yes");
}
void multi_heap_dump(multi_heap_handle_t heap)
{
assert(heap != NULL);
multi_heap_internal_lock(heap);
MULTI_HEAP_STDERR_PRINTF("Showing data for heap: %p \n", (void *)heap);
tlsf_walk_pool(tlsf_get_pool(heap->heap_data), multi_heap_dump_tlsf, NULL);
multi_heap_internal_unlock(heap);
}
size_t multi_heap_free_size_impl(multi_heap_handle_t heap)
{
if (heap == NULL) {
return 0;
}
return heap->free_bytes;
}
size_t multi_heap_minimum_free_size_impl(multi_heap_handle_t heap)
{
if (heap == NULL) {
return 0;
}
return heap->minimum_free_bytes;
}
static void multi_heap_get_info_tlsf(void* ptr, size_t size, int used, void* user)
{
multi_heap_info_t *info = user;
if(used) {
info->allocated_blocks++;
} else {
info->free_blocks++;
if(size > info->largest_free_block ) {
info->largest_free_block = size;
}
}
info->total_blocks++;
}
void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
{
memset(info, 0, sizeof(multi_heap_info_t));
if (heap == NULL) {
return;
}
multi_heap_internal_lock(heap);
tlsf_walk_pool(tlsf_get_pool(heap->heap_data), multi_heap_get_info_tlsf, info);
info->total_allocated_bytes = (heap->pool_size - tlsf_size()) - heap->free_bytes;
info->minimum_free_bytes = heap->minimum_free_bytes;
info->total_free_bytes = heap->free_bytes;
info->largest_free_block = info->largest_free_block ? 1 << (31 - __builtin_clz(info->largest_free_block)) : 0;
multi_heap_internal_unlock(heap);
}