esp-idf/components/spi_flash/spi_flash_chip_generic.c

515 wiersze
16 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <sys/param.h> // For MIN/MAX
#include "spi_flash_chip_generic.h"
#include "spi_flash_defs.h"
#include "esp_log.h"
static const char TAG[] = "chip_generic";
#define SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT 4000
#define SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT 500
#define SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT 1000
#define DEFAULT_IDLE_TIMEOUT 200
#define DEFAULT_PAGE_PROGRAM_TIMEOUT 500
esp_err_t spi_flash_chip_generic_probe(esp_flash_t *chip, uint32_t flash_id)
{
// This is the catch-all probe function, claim the chip always if nothing
// else has claimed it yet.
return ESP_OK;
}
esp_err_t spi_flash_chip_generic_reset(esp_flash_t *chip)
{
//this is written following the winbond spec..
spi_flash_trans_t t;
t = (spi_flash_trans_t) {
.command = CMD_RST_EN,
};
esp_err_t err = chip->host->common_command(chip->host, &t);
if (err != ESP_OK) {
return err;
}
t = (spi_flash_trans_t) {
.command = CMD_RST_DEV,
};
err = chip->host->common_command(chip->host, &t);
if (err != ESP_OK) {
return err;
}
err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
return err;
}
esp_err_t spi_flash_chip_generic_detect_size(esp_flash_t *chip, uint32_t *size)
{
uint32_t id = chip->chip_id;
*size = 0;
/* Can't detect size unless the high byte of the product ID matches the same convention, which is usually 0x40 or
* 0xC0 or similar. */
if ((id & 0x0F00) != 0) {
return ESP_ERR_FLASH_UNSUPPORTED_CHIP;
}
*size = 1 << (id & 0xFF);
return ESP_OK;
}
esp_err_t spi_flash_chip_generic_erase_chip(esp_flash_t *chip)
{
esp_err_t err;
err = chip->chip_drv->set_chip_write_protect(chip, false);
if (err == ESP_OK) {
err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
}
if (err == ESP_OK) {
chip->host->erase_chip(chip->host);
//to save time, flush cache here
if (chip->host->flush_cache) {
err = chip->host->flush_cache(chip->host, 0, chip->size);
if (err != ESP_OK) {
return err;
}
}
err = chip->chip_drv->wait_idle(chip, SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT);
}
return err;
}
esp_err_t spi_flash_chip_generic_erase_sector(esp_flash_t *chip, uint32_t start_address)
{
esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false);
if (err == ESP_OK) {
err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
}
if (err == ESP_OK) {
chip->host->erase_sector(chip->host, start_address);
//to save time, flush cache here
if (chip->host->flush_cache) {
err = chip->host->flush_cache(chip->host, start_address, chip->chip_drv->sector_size);
if (err != ESP_OK) {
return err;
}
}
err = chip->chip_drv->wait_idle(chip, SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT);
}
return err;
}
esp_err_t spi_flash_chip_generic_erase_block(esp_flash_t *chip, uint32_t start_address)
{
esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false);
if (err == ESP_OK) {
err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
}
if (err == ESP_OK) {
chip->host->erase_block(chip->host, start_address);
//to save time, flush cache here
if (chip->host->flush_cache) {
err = chip->host->flush_cache(chip->host, start_address, chip->chip_drv->block_erase_size);
if (err != ESP_OK) {
return err;
}
}
err = chip->chip_drv->wait_idle(chip, SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT);
}
return err;
}
esp_err_t spi_flash_chip_generic_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length)
{
esp_err_t err = ESP_OK;
// Configure the host, and return
err = spi_flash_chip_generic_config_host_io_mode(chip);
if (err == ESP_ERR_NOT_SUPPORTED) {
ESP_LOGE(TAG, "configure host io mode failed - unsupported");
return err;
}
while (err == ESP_OK && length > 0) {
uint32_t read_len = MIN(length, chip->host->max_read_bytes);
err = chip->host->read(chip->host, buffer, address, read_len);
buffer += read_len;
length -= read_len;
address += read_len;
}
return err;
}
esp_err_t spi_flash_chip_generic_page_program(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
{
esp_err_t err;
err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
if (err == ESP_OK) {
// Perform the actual Page Program command
chip->host->program_page(chip->host, buffer, address, length);
err = chip->chip_drv->wait_idle(chip, DEFAULT_PAGE_PROGRAM_TIMEOUT);
}
return err;
}
esp_err_t spi_flash_chip_generic_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
{
esp_err_t err = ESP_OK;
const uint32_t page_size = chip->chip_drv->page_size;
while (err == ESP_OK && length > 0) {
uint32_t page_len = MIN(chip->host->max_write_bytes, MIN(page_size, length));
if ((address + page_len) / page_size != address / page_size) {
// Most flash chips can't page write across a page boundary
page_len = page_size - (address % page_size);
}
err = chip->chip_drv->set_chip_write_protect(chip, false);
if (err == ESP_OK) {
err = chip->chip_drv->program_page(chip, buffer, address, page_len);
address += page_len;
buffer = (void *)((intptr_t)buffer + page_len);
length -= page_len;
}
}
if (err == ESP_OK && chip->host->flush_cache) {
err = chip->host->flush_cache(chip->host, address, length);
}
return err;
}
esp_err_t spi_flash_chip_generic_write_encrypted(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
{
return ESP_ERR_FLASH_UNSUPPORTED_HOST; // TODO
}
esp_err_t spi_flash_chip_generic_set_write_protect(esp_flash_t *chip, bool write_protect)
{
esp_err_t err = ESP_OK;
err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
if (err == ESP_OK) {
chip->host->set_write_protect(chip->host, write_protect);
}
bool wp_read;
err = chip->chip_drv->get_chip_write_protect(chip, &wp_read);
if (err == ESP_OK && wp_read != write_protect) {
// WREN flag has not been set!
err = ESP_ERR_NOT_FOUND;
}
return err;
}
esp_err_t spi_flash_chip_generic_get_write_protect(esp_flash_t *chip, bool *out_write_protect)
{
esp_err_t err = ESP_OK;
uint8_t status;
assert(out_write_protect!=NULL);
err = chip->host->read_status(chip->host, &status);
if (err != ESP_OK) {
return err;
}
*out_write_protect = ((status & SR_WREN) == 0);
return err;
}
esp_err_t spi_flash_generic_wait_host_idle(esp_flash_t *chip, uint32_t *timeout_ms)
{
while (chip->host->host_idle(chip->host) && *timeout_ms > 0) {
if (*timeout_ms > 1) {
chip->os_func->delay_ms(chip->os_func_data, 1);
}
(*timeout_ms)--;
}
return (*timeout_ms > 0) ? ESP_OK : ESP_ERR_TIMEOUT;
}
esp_err_t spi_flash_chip_generic_wait_idle(esp_flash_t *chip, uint32_t timeout_ms)
{
timeout_ms++; // allow at least one pass before timeout, last one has no sleep cycle
uint8_t status = 0;
while (timeout_ms > 0) {
esp_err_t err = spi_flash_generic_wait_host_idle(chip, &timeout_ms);
if (err != ESP_OK) {
return err;
}
err = chip->host->read_status(chip->host, &status);
if (err != ESP_OK) {
return err;
}
if ((status & SR_WIP) == 0) {
break; // Write in progress is complete
}
if (timeout_ms > 1) {
chip->os_func->delay_ms(chip->os_func_data, 1);
}
timeout_ms--;
}
return (timeout_ms > 0) ? ESP_OK : ESP_ERR_TIMEOUT;
}
esp_err_t spi_flash_chip_generic_config_host_io_mode(esp_flash_t *chip)
{
uint32_t dummy_cyclelen_base;
uint32_t addr_bitlen;
uint32_t read_command;
switch (chip->read_mode) {
case SPI_FLASH_QIO:
//for QIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that.
addr_bitlen = 32;
dummy_cyclelen_base = 4;
read_command = CMD_FASTRD_QIO;
break;
case SPI_FLASH_QOUT:
addr_bitlen = 24;
dummy_cyclelen_base = 8;
read_command = CMD_FASTRD_QUAD;
break;
case SPI_FLASH_DIO:
//for DIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that.
addr_bitlen = 28;
dummy_cyclelen_base = 2;
read_command = CMD_FASTRD_DIO;
break;
case SPI_FLASH_DOUT:
addr_bitlen = 24;
dummy_cyclelen_base = 8;
read_command = CMD_FASTRD_DUAL;
break;
case SPI_FLASH_FASTRD:
addr_bitlen = 24;
dummy_cyclelen_base = 8;
read_command = CMD_FASTRD;
break;
case SPI_FLASH_SLOWRD:
addr_bitlen = 24;
dummy_cyclelen_base = 0;
read_command = CMD_READ;
break;
default:
return ESP_ERR_FLASH_NOT_INITIALISED;
}
return chip->host->configure_host_io_mode(chip->host, read_command, addr_bitlen, dummy_cyclelen_base,
chip->read_mode);
}
esp_err_t spi_flash_chip_generic_get_io_mode(esp_flash_t *chip, esp_flash_io_mode_t* out_io_mode)
{
// On "generic" chips, this involves checking
// bit 1 (QE) of RDSR2 (35h) result
// (it works this way on GigaDevice & Fudan Micro chips, probably others...)
const uint8_t BIT_QE = 1 << 1;
uint32_t sr;
esp_err_t ret = spi_flash_common_read_status_8b_rdsr2(chip, &sr);
if (ret == ESP_OK) {
*out_io_mode = ((sr & BIT_QE)? SPI_FLASH_QOUT: 0);
}
return ret;
}
esp_err_t spi_flash_chip_generic_set_io_mode(esp_flash_t *chip)
{
// On "generic" chips, this involves checking
// bit 9 (QE) of RDSR (05h) result
const uint32_t BIT_QE = 1 << 9;
return spi_flash_common_set_io_mode(chip,
spi_flash_common_write_status_16b_wrsr,
spi_flash_common_read_status_16b_rdsr_rdsr2,
BIT_QE);
}
static const char chip_name[] = "generic";
const spi_flash_chip_t esp_flash_chip_generic = {
.name = chip_name,
.probe = spi_flash_chip_generic_probe,
.reset = spi_flash_chip_generic_reset,
.detect_size = spi_flash_chip_generic_detect_size,
.erase_chip = spi_flash_chip_generic_erase_chip,
.erase_sector = spi_flash_chip_generic_erase_sector,
.erase_block = spi_flash_chip_generic_erase_block,
.sector_size = 4 * 1024,
.block_erase_size = 64 * 1024,
// TODO: figure out if generic chip-wide protection bits exist across some manufacturers
.get_chip_write_protect = spi_flash_chip_generic_get_write_protect,
.set_chip_write_protect = spi_flash_chip_generic_set_write_protect,
// Chip write protection regions do not appear to be standardised
// at all, this is implemented in chip-specific drivers only.
.num_protectable_regions = 0,
.protectable_regions = NULL,
.get_protected_regions = NULL,
.set_protected_regions = NULL,
.read = spi_flash_chip_generic_read,
.write = spi_flash_chip_generic_write,
.program_page = spi_flash_chip_generic_page_program,
.page_size = 256,
.write_encrypted = spi_flash_chip_generic_write_encrypted,
.wait_idle = spi_flash_chip_generic_wait_idle,
.set_io_mode = spi_flash_chip_generic_set_io_mode,
.get_io_mode = spi_flash_chip_generic_get_io_mode,
};
/*******************************************************************************
* Utility functions
******************************************************************************/
static esp_err_t spi_flash_common_read_qe_sr(esp_flash_t *chip, uint8_t qe_rdsr_command, uint8_t qe_sr_bitwidth, uint32_t *sr)
{
uint32_t sr_buf = 0;
spi_flash_trans_t t = {
.command = qe_rdsr_command,
.miso_data = (uint8_t*) &sr_buf,
.miso_len = qe_sr_bitwidth / 8,
};
esp_err_t ret = chip->host->common_command(chip->host, &t);
*sr = sr_buf;
return ret;
}
static esp_err_t spi_flash_common_write_qe_sr(esp_flash_t *chip, uint8_t qe_wrsr_command, uint8_t qe_sr_bitwidth, uint32_t qe)
{
spi_flash_trans_t t = {
.command = qe_wrsr_command,
.mosi_data = ((uint8_t*) &qe),
.mosi_len = qe_sr_bitwidth / 8,
.miso_len = 0,
};
return chip->host->common_command(chip->host, &t);
}
esp_err_t spi_flash_common_read_status_16b_rdsr_rdsr2(esp_flash_t* chip, uint32_t* out_sr)
{
uint32_t sr, sr2;
esp_err_t ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, &sr2);
if (ret == ESP_OK) {
ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, &sr);
}
if (ret == ESP_OK) {
*out_sr = (sr & 0xff) | ((sr2 & 0xff) << 8);
}
return ret;
}
esp_err_t spi_flash_common_read_status_8b_rdsr2(esp_flash_t* chip, uint32_t* out_sr)
{
return spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, out_sr);
}
esp_err_t spi_flash_common_read_status_8b_rdsr(esp_flash_t* chip, uint32_t* out_sr)
{
return spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, out_sr);
}
esp_err_t spi_flash_common_write_status_16b_wrsr(esp_flash_t* chip, uint32_t sr)
{
return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 16, sr);
}
esp_err_t spi_flash_common_write_status_8b_wrsr(esp_flash_t* chip, uint32_t sr)
{
return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 8, sr);
}
esp_err_t spi_flash_common_write_status_8b_wrsr2(esp_flash_t* chip, uint32_t sr)
{
return spi_flash_common_write_qe_sr(chip, CMD_WRSR2, 8, sr);
}
esp_err_t spi_flash_common_set_io_mode(esp_flash_t *chip, esp_flash_wrsr_func_t wrsr_func, esp_flash_rdsr_func_t rdsr_func, uint32_t qe_sr_bit)
{
esp_err_t ret = ESP_OK;
const bool is_quad_mode = esp_flash_is_quad_mode(chip);
bool update_config = false;
const bool force_check = true; //in case some chips doesn't support erase QE
bool need_check = is_quad_mode;
if (force_check) {
need_check = true;
}
uint32_t sr_update;
if (need_check) {
// Ensure quad modes are enabled, using the Quad Enable parameters supplied.
uint32_t sr;
ret = (*rdsr_func)(chip, &sr);
if (ret != ESP_OK) {
return ret;
}
ESP_EARLY_LOGD(TAG, "set_io_mode: status before 0x%x", sr);
if (is_quad_mode) {
sr_update = sr | qe_sr_bit;
} else {
sr_update = sr & (~qe_sr_bit);
}
ESP_EARLY_LOGV(TAG, "set_io_mode: status update 0x%x", sr_update);
if (sr != sr_update) {
update_config = true;
}
}
if (update_config) {
//some chips needs the write protect to be disabled before writing to Status Register
chip->chip_drv->set_chip_write_protect(chip, false);
ret = (*wrsr_func)(chip, sr_update);
if (ret != ESP_OK) {
return ret;
}
ret = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT);
if (ret != ESP_OK) {
return ret;
}
/* Check the new QE bit has stayed set */
uint32_t sr;
ret = (*rdsr_func)(chip, &sr);
if (ret != ESP_OK) {
return ret;
}
ESP_EARLY_LOGD(TAG, "set_io_mode: status after 0x%x", sr);
if (sr != sr_update) {
ret = ESP_ERR_FLASH_NO_RESPONSE;
}
chip->chip_drv->set_chip_write_protect(chip, true);
}
return ret;
}