esp-idf/components/nvs_flash/test_nvs_host/test_nvs.cpp

1135 wiersze
40 KiB
C++

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "catch.hpp"
#include "nvs.hpp"
#include "nvs_test_api.h"
#include "spi_flash_emulation.h"
#include <sstream>
#include <iostream>
using namespace std;
using namespace nvs;
stringstream s_perf;
void dumpBytes(const uint8_t* data, size_t count)
{
for (uint32_t i = 0; i < count; ++i) {
if (i % 32 == 0) {
printf("%08x ", i);
}
printf("%02x ", data[i]);
if ((i + 1) % 32 == 0) {
printf("\n");
}
}
}
TEST_CASE("crc32 behaves as expected", "[nvs]")
{
Item item1;
item1.datatype = ItemType::I32;
item1.nsIndex = 1;
item1.crc32 = 0;
item1.reserved = 0xff;
fill_n(item1.key, sizeof(item1.key), 0xbb);
fill_n(item1.data, sizeof(item1.data), 0xaa);
auto crc32_1 = item1.calculateCrc32();
Item item2 = item1;
item2.crc32 = crc32_1;
CHECK(crc32_1 == item2.calculateCrc32());
item2 = item1;
item2.nsIndex = 2;
CHECK(crc32_1 != item2.calculateCrc32());
item2 = item1;
item2.datatype = ItemType::U32;
CHECK(crc32_1 != item2.calculateCrc32());
item2 = item1;
strncpy(item2.key, "foo", Item::MAX_KEY_LENGTH);
CHECK(crc32_1 != item2.calculateCrc32());
}
TEST_CASE("starting with empty flash, page is in uninitialized state", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.state() == Page::PageState::INVALID);
CHECK(page.load(0) == ESP_OK);
CHECK(page.state() == Page::PageState::UNINITIALIZED);
}
TEST_CASE("can distinguish namespaces", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
int32_t val1 = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val1, sizeof(val1)) == ESP_OK);
int32_t val2 = 0x23456789;
CHECK(page.writeItem(2, ItemType::I32, "intval1", &val2, sizeof(val2)) == ESP_OK);
int32_t readVal;
CHECK(page.readItem(2, ItemType::I32, "intval1", &readVal, sizeof(readVal)) == ESP_OK);
CHECK(readVal == val2);
}
TEST_CASE("reading with different type causes type mismatch error", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
int32_t val = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
CHECK(page.readItem(1, ItemType::U32, "intval1", &val, sizeof(val)) == ESP_ERR_NVS_TYPE_MISMATCH);
}
TEST_CASE("when page is erased, it's state becomes UNITIALIZED", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
int32_t val = 0x12345678;
CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
CHECK(page.erase() == ESP_OK);
CHECK(page.state() == Page::PageState::UNINITIALIZED);
}
TEST_CASE("when writing and erasing, used/erased counts are updated correctly", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
CHECK(page.getUsedEntryCount() == 0);
CHECK(page.getErasedEntryCount() == 0);
uint32_t foo1 = 0;
CHECK(page.writeItem(1, "foo1", foo1) == ESP_OK);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.writeItem(2, "foo1", foo1) == ESP_OK);
CHECK(page.getUsedEntryCount() == 2);
CHECK(page.eraseItem<uint32_t>(2, "foo1") == ESP_OK);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == 1);
for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", i);
CHECK(page.writeItem(1, name, i) == ESP_OK);
}
CHECK(page.getUsedEntryCount() == Page::ENTRY_COUNT - 1);
CHECK(page.getErasedEntryCount() == 1);
for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", i);
CHECK(page.eraseItem(1, itemTypeOf<size_t>(), name) == ESP_OK);
}
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == Page::ENTRY_COUNT - 1);
}
TEST_CASE("when page is full, adding an element fails", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
char name[16];
snprintf(name, sizeof(name), "i%ld", i);
CHECK(page.writeItem(1, name, i) == ESP_OK);
}
CHECK(page.writeItem(1, "foo", 64UL) == ESP_ERR_NVS_PAGE_FULL);
}
TEST_CASE("page maintains its seq number")
{
SpiFlashEmulator emu(1);
{
Page page;
CHECK(page.load(0) == ESP_OK);
CHECK(page.setSeqNumber(123) == ESP_OK);
int32_t val = 42;
CHECK(page.writeItem(1, ItemType::I32, "dummy", &val, sizeof(val)) == ESP_OK);
}
{
Page page;
CHECK(page.load(0) == ESP_OK);
uint32_t seqno;
CHECK(page.getSeqNumber(seqno) == ESP_OK);
CHECK(seqno == 123);
}
}
TEST_CASE("can write and read variable length data", "[nvs]")
{
SpiFlashEmulator emu(1);
Page page;
CHECK(page.load(0) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
size_t len = strlen(str);
CHECK(page.writeItem(1, "stuff1", 42) == ESP_OK);
CHECK(page.writeItem(1, "stuff2", 1) == ESP_OK);
CHECK(page.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
CHECK(page.writeItem(1, "stuff3", 2) == ESP_OK);
CHECK(page.writeItem(1, ItemType::BLOB, "baz", str, len) == ESP_OK);
CHECK(page.writeItem(1, "stuff4", 0x7abbccdd) == ESP_OK);
char buf[sizeof(str) + 16];
int32_t value;
CHECK(page.readItem(1, "stuff1", value) == ESP_OK);
CHECK(value == 42);
CHECK(page.readItem(1, "stuff2", value) == ESP_OK);
CHECK(value == 1);
CHECK(page.readItem(1, "stuff3", value) == ESP_OK);
CHECK(value == 2);
CHECK(page.readItem(1, "stuff4", value) == ESP_OK);
CHECK(value == 0x7abbccdd);
fill_n(buf, sizeof(buf), 0xff);
CHECK(page.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
fill_n(buf, sizeof(buf), 0xff);
CHECK(page.readItem(1, ItemType::BLOB, "baz", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str)) == 0);
}
TEST_CASE("can init PageManager in empty flash", "[nvs]")
{
SpiFlashEmulator emu(4);
PageManager pm;
CHECK(pm.load(0, 4) == ESP_OK);
}
TEST_CASE("PageManager adds page in the correct order", "[nvs]")
{
const size_t pageCount = 8;
SpiFlashEmulator emu(pageCount);
uint32_t pageNo[pageCount] = { -1U, 50, 11, -1U, 23, 22, 24, 49};
for (uint32_t i = 0; i < pageCount; ++i) {
Page p;
p.load(i);
if (pageNo[i] != -1U) {
p.setSeqNumber(pageNo[i]);
p.writeItem(1, "foo", 10U);
}
}
PageManager pageManager;
CHECK(pageManager.load(0, pageCount) == ESP_OK);
uint32_t lastSeqNo = 0;
for (auto it = std::begin(pageManager); it != std::end(pageManager); ++it) {
uint32_t seqNo;
CHECK(it->getSeqNumber(seqNo) == ESP_OK);
CHECK(seqNo > lastSeqNo);
}
}
TEST_CASE("can init storage in empty flash", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
s_perf << "Time to init empty storage (4 sectors): " << emu.getTotalTime() << " us" << std::endl;
}
TEST_CASE("storage doesn't add duplicates within one page", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
int bar = 0;
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
Page page;
page.load(4);
CHECK(page.getUsedEntryCount() == 1);
CHECK(page.getErasedEntryCount() == 1);
}
TEST_CASE("can write one item a thousand times", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
REQUIRE(storage.writeItem(1, "i", static_cast<int>(i)) == ESP_OK);
}
s_perf << "Time to write one item a thousand times: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << " " << emu.getWriteOps() << " " << emu.getReadOps() << " " << emu.getWriteBytes() << " " << emu.getReadBytes() << ")" << std::endl;
}
TEST_CASE("storage doesn't add duplicates within multiple pages", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
int bar = 0;
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
CHECK(storage.writeItem(1, "foo", static_cast<int>(bar)) == ESP_OK);
}
CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
Page page;
page.load(4);
CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_ERR_NVS_NOT_FOUND);
page.load(5);
CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_OK);
}
TEST_CASE("storage can find items on second page if first is not fully written and has cached search data", "[nvs]")
{
SpiFlashEmulator emu(3);
Storage storage;
CHECK(storage.init(0, 3) == ESP_OK);
int bar = 0;
uint8_t bigdata[100 * 32] = {0};
// write one big chunk of data
ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "first", bigdata, sizeof(bigdata)));
// write second one; it will not fit into the first page
ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "second", bigdata, sizeof(bigdata)));
size_t size;
ESP_ERROR_CHECK(storage.getItemDataSize(0, ItemType::BLOB, "first", size));
CHECK(size == sizeof(bigdata));
ESP_ERROR_CHECK(storage.getItemDataSize(0, ItemType::BLOB, "second", size));
CHECK(size == sizeof(bigdata));
}
TEST_CASE("can write and read variable length data lots of times", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
char buf[sizeof(str) + 16];
size_t len = strlen(str);
for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
CAPTURE(i);
CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
CHECK(storage.writeItem(1, "foo", static_cast<uint32_t>(i)) == ESP_OK);
uint32_t value;
CHECK(storage.readItem(1, "foo", value) == ESP_OK);
CHECK(value == i);
fill_n(buf, sizeof(buf), 0xff);
CHECK(storage.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
}
s_perf << "Time to write one string and one integer a thousand times: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << " " << emu.getWriteOps() << " " << emu.getReadOps() << " " << emu.getWriteBytes() << " " << emu.getReadBytes() << ")" << std::endl;
}
TEST_CASE("can get length of variable length data", "[nvs]")
{
SpiFlashEmulator emu(8);
emu.randomize(200);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
size_t len = strlen(str);
CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
size_t dataSize;
CHECK(storage.getItemDataSize(1, ItemType::SZ, "foobaar", dataSize) == ESP_OK);
CHECK(dataSize == len + 1);
CHECK(storage.writeItem(2, ItemType::BLOB, "foobaar", str, len) == ESP_OK);
CHECK(storage.getItemDataSize(2, ItemType::BLOB, "foobaar", dataSize) == ESP_OK);
CHECK(dataSize == len);
}
TEST_CASE("can create namespaces", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
uint8_t nsi;
CHECK(storage.createOrOpenNamespace("wifi", false, nsi) == ESP_ERR_NVS_NOT_FOUND);
CHECK(storage.createOrOpenNamespace("wifi", true, nsi) == ESP_OK);
Page page;
page.load(4);
CHECK(page.findItem(Page::NS_INDEX, ItemType::U8, "wifi") == ESP_OK);
}
TEST_CASE("storage may become full", "[nvs]")
{
SpiFlashEmulator emu(8);
Storage storage;
emu.setBounds(4, 8);
CHECK(storage.init(4, 4) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 3; ++i) {
char name[Item::MAX_KEY_LENGTH + 1];
snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
REQUIRE(storage.writeItem(1, name, static_cast<int>(i)) == ESP_OK);
}
REQUIRE(storage.writeItem(1, "foo", 10) == ESP_ERR_NVS_NOT_ENOUGH_SPACE);
}
TEST_CASE("can modify an item on a page which will be erased", "[nvs]")
{
SpiFlashEmulator emu(2);
Storage storage;
CHECK(storage.init(0, 2) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 3 + 1; ++i) {
REQUIRE(storage.writeItem(1, "foo", 42U) == ESP_OK);
}
}
TEST_CASE("can erase items", "[nvs]")
{
SpiFlashEmulator emu(3);
Storage storage;
CHECK(storage.init(0, 3) == ESP_OK);
for (size_t i = 0; i < Page::ENTRY_COUNT * 2 - 3; ++i) {
char name[Item::MAX_KEY_LENGTH + 1];
snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
REQUIRE(storage.writeItem(3, name, static_cast<int>(i)) == ESP_OK);
}
CHECK(storage.writeItem(1, "foo", 32) == ESP_OK);
CHECK(storage.writeItem(2, "foo", 64) == ESP_OK);
CHECK(storage.eraseItem(2, "foo") == ESP_OK);
int val;
CHECK(storage.readItem(1, "foo", val) == ESP_OK);
CHECK(val == 32);
CHECK(storage.eraseNamespace(3) == ESP_OK);
CHECK(storage.readItem(2, "foo", val) == ESP_ERR_NVS_NOT_FOUND);
CHECK(storage.readItem(3, "key00222", val) == ESP_ERR_NVS_NOT_FOUND);
}
#define TEST_ESP_ERR(rc, res) CHECK((rc) == (res))
#define TEST_ESP_OK(rc) CHECK((rc) == ESP_OK)
TEST_CASE("nvs api tests", "[nvs]")
{
SpiFlashEmulator emu(10);
emu.randomize(100);
nvs_handle handle_1;
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_ERR(nvs_open("namespace1", NVS_READWRITE, &handle_1), ESP_ERR_NVS_NOT_INITIALIZED);
for (uint16_t i = NVS_FLASH_SECTOR; i <NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
spi_flash_erase_sector(i);
}
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
// TEST_ESP_ERR(nvs_set_i32(handle_1, "foo", 0x12345678), ESP_ERR_NVS_READ_ONLY);
// nvs_close(handle_1);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789));
nvs_handle handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", 0x3456789a));
const char* str = "value 0123456789abcdef0123456789abcdef";
TEST_ESP_OK(nvs_set_str(handle_2, "key", str));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(0x3456789a == v2);
char buf[strlen(str) + 1];
size_t buf_len = sizeof(buf);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str));
}
TEST_CASE("wifi test", "[nvs]")
{
SpiFlashEmulator emu(10);
emu.randomize(10);
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle misc_handle;
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &misc_handle));
char log[33];
size_t log_size = sizeof(log);
TEST_ESP_ERR(nvs_get_str(misc_handle, "log", log, &log_size), ESP_ERR_NVS_NOT_FOUND);
strcpy(log, "foobarbazfizzz");
TEST_ESP_OK(nvs_set_str(misc_handle, "log", log));
nvs_handle net80211_handle;
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &net80211_handle));
uint8_t opmode = 2;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "wifi.opmode", &opmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "wifi.opmode", opmode));
uint8_t country = 0;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "wifi.country", &opmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "wifi.country", opmode));
char ssid[36];
size_t size = sizeof(ssid);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.ssid", ssid, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(ssid, "my android AP");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.ssid", ssid, size));
char mac[6];
size = sizeof(mac);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.mac", mac, &size), ESP_ERR_NVS_NOT_FOUND);
memset(mac, 0xab, 6);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.mac", mac, size));
uint8_t authmode = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.authmode", &authmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.authmode", authmode));
char pswd[65];
size = sizeof(pswd);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.pswd", pswd, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(pswd, "`123456788990-=");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.pswd", pswd, size));
char pmk[32];
size = sizeof(pmk);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.pmk", pmk, &size), ESP_ERR_NVS_NOT_FOUND);
memset(pmk, 1, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.pmk", pmk, size));
uint8_t chan = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.chan", &chan), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.chan", chan));
uint8_t autoconn = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "auto.conn", &autoconn), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "auto.conn", autoconn));
uint8_t bssid_set = 1;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "bssid.set", &bssid_set), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "bssid.set", bssid_set));
char bssid[6];
size = sizeof(bssid);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.bssid", bssid, &size), ESP_ERR_NVS_NOT_FOUND);
memset(mac, 0xcd, 6);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.bssid", bssid, size));
uint8_t phym = 3;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.phym", &phym), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.phym", phym));
uint8_t phybw = 2;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.phybw", &phybw), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.phybw", phybw));
char apsw[2];
size = sizeof(apsw);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.apsw", apsw, &size), ESP_ERR_NVS_NOT_FOUND);
memset(apsw, 0x2, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.apsw", apsw, size));
char apinfo[700];
size = sizeof(apinfo);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.apinfo", apinfo, &size), ESP_ERR_NVS_NOT_FOUND);
memset(apinfo, 0, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.apinfo", apinfo, size));
size = sizeof(ssid);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.ssid", ssid, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(ssid, "ESP_A2F340");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.ssid", ssid, size));
size = sizeof(mac);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.mac", mac, &size), ESP_ERR_NVS_NOT_FOUND);
memset(mac, 0xac, 6);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.mac", mac, size));
size = sizeof(pswd);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.passwd", pswd, &size), ESP_ERR_NVS_NOT_FOUND);
strcpy(pswd, "");
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.passwd", pswd, size));
size = sizeof(pmk);
TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.pmk", pmk, &size), ESP_ERR_NVS_NOT_FOUND);
memset(pmk, 1, size);
TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.pmk", pmk, size));
chan = 6;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.chan", &chan), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.chan", chan));
authmode = 0;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.authmode", &authmode), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.authmode", authmode));
uint8_t hidden = 0;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.hidden", &hidden), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.hidden", hidden));
uint8_t max_conn = 4;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.max.conn", &max_conn), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.max.conn", max_conn));
uint8_t bcn_interval = 2;
TEST_ESP_ERR(nvs_get_u8(net80211_handle, "bcn_interval", &bcn_interval), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_set_u8(net80211_handle, "bcn_interval", bcn_interval));
s_perf << "Time to simulate nvs init with wifi libs: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << "E " << emu.getWriteOps() << "W " << emu.getReadOps() << "R " << emu.getWriteBytes() << "Wb " << emu.getReadBytes() << "Rb)" << std::endl;
}
TEST_CASE("can init storage from flash with random contents", "[nvs]")
{
SpiFlashEmulator emu(10);
emu.randomize(42);
nvs_handle handle;
const uint32_t NVS_FLASH_SECTOR = 5;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &handle));
uint8_t opmode = 2;
if (nvs_get_u8(handle, "wifi.opmode", &opmode) != ESP_OK) {
TEST_ESP_OK(nvs_set_u8(handle, "wifi.opmode", opmode));
}
}
TEST_CASE("nvs api tests, starting with random data in flash", "[nvs][.][long]")
{
for (size_t count = 0; count < 10000; ++count) {
SpiFlashEmulator emu(10);
emu.randomize(static_cast<uint32_t>(count));
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle handle_1;
TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
for (size_t i = 0; i < 500; ++i) {
nvs_handle handle_2;
TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789 % (i + 1)));
TEST_ESP_OK(nvs_set_i32(handle_2, "foo", static_cast<int32_t>(i)));
const char* str = "value 0123456789abcdef0123456789abcdef %09d";
char str_buf[128];
snprintf(str_buf, sizeof(str_buf), str, i + count * 1024);
TEST_ESP_OK(nvs_set_str(handle_2, "key", str_buf));
int32_t v1;
TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
CHECK(0x23456789 % (i + 1) == v1);
int32_t v2;
TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
CHECK(static_cast<int32_t>(i) == v2);
char buf[128];
size_t buf_len = sizeof(buf);
TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
CHECK(0 == strcmp(buf, str_buf));
nvs_close(handle_2);
}
nvs_close(handle_1);
}
}
extern "C" void nvs_dump();
class RandomTest {
static const size_t nKeys = 9;
int32_t v1 = 0, v2 = 0;
uint64_t v3 = 0, v4 = 0;
static const size_t strBufLen = 1024;
char v5[strBufLen], v6[strBufLen], v7[strBufLen], v8[strBufLen], v9[strBufLen];
bool written[nKeys];
public:
RandomTest()
{
std::fill_n(written, nKeys, false);
}
template<typename TGen>
esp_err_t doRandomThings(nvs_handle handle, TGen gen, size_t& count) {
const char* keys[] = {"foo", "bar", "longkey_0123456", "another key", "param1", "param2", "param3", "param4", "param5"};
const ItemType types[] = {ItemType::I32, ItemType::I32, ItemType::U64, ItemType::U64, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ};
void* values[] = {&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9};
const size_t nKeys = sizeof(keys) / sizeof(keys[0]);
static_assert(nKeys == sizeof(types) / sizeof(types[0]), "");
static_assert(nKeys == sizeof(values) / sizeof(values[0]), "");
auto randomRead = [&](size_t index) -> esp_err_t {
switch (types[index]) {
case ItemType::I32:
{
int32_t val;
auto err = nvs_get_i32(handle, keys[index], &val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(val == *reinterpret_cast<int32_t*>(values[index]));
}
break;
}
case ItemType::U64:
{
uint64_t val;
auto err = nvs_get_u64(handle, keys[index], &val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(val == *reinterpret_cast<uint64_t*>(values[index]));
}
break;
}
case ItemType::SZ:
{
char buf[strBufLen];
size_t len = strBufLen;
auto err = nvs_get_str(handle, keys[index], buf, &len);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (!written[index]) {
REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
}
else {
REQUIRE(err == ESP_OK);
REQUIRE(strncmp(buf, reinterpret_cast<const char*>(values[index]), strBufLen) == 0);
}
break;
}
default:
assert(0);
}
return ESP_OK;
};
auto randomWrite = [&](size_t index) -> esp_err_t {
switch (types[index]) {
case ItemType::I32:
{
int32_t val = static_cast<int32_t>(gen());
auto err = nvs_set_i32(handle, keys[index], val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
*reinterpret_cast<int32_t*>(values[index]) = val;
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
*reinterpret_cast<int32_t*>(values[index]) = val;
break;
}
case ItemType::U64:
{
uint64_t val = static_cast<uint64_t>(gen());
auto err = nvs_set_u64(handle, keys[index], val);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
*reinterpret_cast<uint64_t*>(values[index]) = val;
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
*reinterpret_cast<uint64_t*>(values[index]) = val;
break;
}
case ItemType::SZ:
{
char buf[strBufLen];
size_t len = strBufLen;
size_t strLen = gen() % (strBufLen - 1);
std::generate_n(buf, strLen, [&]() -> char {
const char c = static_cast<char>(gen() % 127);
return (c < 32) ? 32 : c;
});
buf[strLen] = 0;
auto err = nvs_set_str(handle, keys[index], buf);
if (err == ESP_ERR_FLASH_OP_FAIL) {
return err;
}
if (err == ESP_ERR_NVS_REMOVE_FAILED) {
written[index] = true;
strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
return ESP_ERR_FLASH_OP_FAIL;
}
REQUIRE(err == ESP_OK);
written[index] = true;
strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
break;
}
default:
assert(0);
}
return ESP_OK;
};
for (; count != 0; --count) {
size_t index = gen() % nKeys;
switch (gen() % 3) {
case 0: // read, 1/3
if (randomRead(index) == ESP_ERR_FLASH_OP_FAIL) {
return ESP_ERR_FLASH_OP_FAIL;
}
break;
default: // write, 2/3
if (randomWrite(index) == ESP_ERR_FLASH_OP_FAIL) {
return ESP_ERR_FLASH_OP_FAIL;
}
break;
}
}
return ESP_OK;
}
};
TEST_CASE("monkey test", "[nvs][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
SpiFlashEmulator emu(10);
emu.randomize(seed);
emu.clearStats();
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
nvs_handle handle;
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
RandomTest test;
size_t count = 1000;
CHECK(test.doRandomThings(handle, gen, count) == ESP_OK);
s_perf << "Monkey test: nErase=" << emu.getEraseOps() << " nWrite=" << emu.getWriteOps() << std::endl;
}
TEST_CASE("test recovery from sudden poweroff", "[.][long][nvs][recovery][monkey]")
{
std::random_device rd;
std::mt19937 gen(rd());
uint32_t seed = 3;
gen.seed(seed);
const size_t iter_count = 2000;
SpiFlashEmulator emu(10);
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
size_t totalOps = 0;
int lastPercent = -1;
for (uint32_t errDelay = 0; ; ++errDelay) {
INFO(errDelay);
emu.randomize(seed);
emu.clearStats();
emu.failAfter(errDelay);
RandomTest test;
if (totalOps != 0) {
int percent = errDelay * 100 / totalOps;
if (percent > lastPercent) {
printf("%d/%d (%d%%)\r\n", errDelay, static_cast<int>(totalOps), percent);
lastPercent = percent;
}
}
nvs_handle handle;
size_t count = iter_count;
if (nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN) == ESP_OK) {
if (nvs_open("namespace1", NVS_READWRITE, &handle) == ESP_OK) {
if(test.doRandomThings(handle, gen, count) != ESP_ERR_FLASH_OP_FAIL) {
nvs_close(handle);
break;
}
nvs_close(handle);
}
}
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
auto res = test.doRandomThings(handle, gen, count);
if (res != ESP_OK) {
nvs_dump();
CHECK(0);
}
nvs_close(handle);
totalOps = emu.getEraseOps() + emu.getWriteBytes() / 4;
}
}
TEST_CASE("test for memory leaks in open/set", "[leaks]")
{
SpiFlashEmulator emu(10);
const uint32_t NVS_FLASH_SECTOR = 6;
const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
TEST_ESP_OK(nvs_flash_init_custom(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
for (int i = 0; i < 100000; ++i) {
nvs_handle light_handle = 0;
char lightbulb[1024] = {12, 13, 14, 15, 16};
TEST_ESP_OK(nvs_open("light", NVS_READWRITE, &light_handle));
TEST_ESP_OK(nvs_set_blob(light_handle, "key", lightbulb, sizeof(lightbulb)));
TEST_ESP_OK(nvs_commit(light_handle));
nvs_close(light_handle);
}
}
TEST_CASE("duplicate items are removed", "[nvs][dupes]")
{
SpiFlashEmulator emu(3);
{
// create one item
nvs::Page p;
p.load(0);
p.writeItem<uint8_t>(1, "opmode", 3);
}
{
// add another two without deleting the first one
nvs::Item item(1, ItemType::U8, 1, "opmode");
item.data[0] = 2;
item.crc32 = item.calculateCrc32();
emu.write(3 * 32, reinterpret_cast<const uint32_t*>(&item), sizeof(item));
emu.write(4 * 32, reinterpret_cast<const uint32_t*>(&item), sizeof(item));
uint32_t mask = 0xFFFFFFEA;
emu.write(32, &mask, 4);
}
{
// load page and check that second item persists
nvs::Storage s;
s.init(0, 3);
uint8_t val;
ESP_ERROR_CHECK(s.readItem(1, "opmode", val));
CHECK(val == 2);
}
{
Page p;
p.load(0);
CHECK(p.getErasedEntryCount() == 2);
CHECK(p.getUsedEntryCount() == 1);
}
}
TEST_CASE("recovery after failure to write data", "[nvs]")
{
SpiFlashEmulator emu(3);
const char str[] = "value 0123456789abcdef012345678value 0123456789abcdef012345678";
// make flash write fail exactly in Page::writeEntryData
emu.failAfter(17);
{
Storage storage;
TEST_ESP_OK(storage.init(0, 3));
TEST_ESP_ERR(storage.writeItem(1, ItemType::SZ, "key", str, strlen(str)), ESP_ERR_FLASH_OP_FAIL);
// check that repeated operations cause an error
TEST_ESP_ERR(storage.writeItem(1, ItemType::SZ, "key", str, strlen(str)), ESP_ERR_NVS_INVALID_STATE);
uint8_t val;
TEST_ESP_ERR(storage.readItem(1, ItemType::U8, "key", &val, sizeof(val)), ESP_ERR_NVS_NOT_FOUND);
}
{
// load page and check that data was erased
Page p;
p.load(0);
CHECK(p.getErasedEntryCount() == 3);
CHECK(p.getUsedEntryCount() == 0);
// try to write again
TEST_ESP_OK(p.writeItem(1, ItemType::SZ, "key", str, strlen(str)));
}
}
TEST_CASE("crc error in variable length item is handled", "[nvs]")
{
SpiFlashEmulator emu(3);
const uint64_t before_val = 0xbef04e;
const uint64_t after_val = 0xaf7e4;
// write some data
{
Page p;
p.load(0);
TEST_ESP_OK(p.writeItem<uint64_t>(0, "before", before_val));
const char* str = "foobar";
TEST_ESP_OK(p.writeItem(0, ItemType::SZ, "key", str, strlen(str)));
TEST_ESP_OK(p.writeItem<uint64_t>(0, "after", after_val));
}
// corrupt some data
uint32_t w;
CHECK(emu.read(&w, 32 * 3 + 8, sizeof(w)));
w &= 0xf000000f;
CHECK(emu.write(32 * 3 + 8, &w, sizeof(w)));
// load and check
{
Page p;
p.load(0);
CHECK(p.getUsedEntryCount() == 2);
CHECK(p.getErasedEntryCount() == 2);
uint64_t val;
TEST_ESP_OK(p.readItem<uint64_t>(0, "before", val));
CHECK(val == before_val);
TEST_ESP_ERR(p.findItem(0, ItemType::SZ, "key"), ESP_ERR_NVS_NOT_FOUND);
TEST_ESP_OK(p.readItem<uint64_t>(0, "after", val));
CHECK(val == after_val);
}
}
TEST_CASE("read/write failure (TW8406)", "[nvs]")
{
SpiFlashEmulator emu(3);
nvs_flash_init_custom(0, 3);
for (int attempts = 0; attempts < 3; ++attempts) {
int i = 0;
nvs_handle light_handle = 0;
char key[15] = {0};
char data[76] = {12, 13, 14, 15, 16};
uint8_t number = 20;
size_t data_len = sizeof(data);
ESP_ERROR_CHECK(nvs_open("LIGHT", NVS_READWRITE, &light_handle));
ESP_ERROR_CHECK(nvs_set_u8(light_handle, "RecordNum", number));
for (i = 0; i < number; ++i) {
sprintf(key, "light%d", i);
ESP_ERROR_CHECK(nvs_set_blob(light_handle, key, data, sizeof(data)));
}
nvs_commit(light_handle);
uint8_t get_number = 0;
ESP_ERROR_CHECK(nvs_get_u8(light_handle, "RecordNum", &get_number));
REQUIRE(number == get_number);
for (i = 0; i < number; ++i) {
char data[76] = {0};
sprintf(key, "light%d", i);
ESP_ERROR_CHECK(nvs_get_blob(light_handle, key, data, &data_len));
}
nvs_close(light_handle);
}
}
TEST_CASE("nvs_flash_init checks for an empty page", "[nvs]")
{
const size_t blob_size = 2048; // big enough so that only one can fit into a page
uint8_t blob[blob_size] = {0};
SpiFlashEmulator emu(5);
TEST_ESP_OK( nvs_flash_init_custom(0, 5) );
nvs_handle handle;
TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
TEST_ESP_OK( nvs_set_blob(handle, "1", blob, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "2", blob, blob_size) );
TEST_ESP_OK( nvs_set_blob(handle, "3", blob, blob_size) );
TEST_ESP_OK( nvs_commit(handle) );
nvs_close(handle);
// first two pages are now full, third one is writable, last two are empty
// init should fail
TEST_ESP_ERR( nvs_flash_init_custom(0, 3), ESP_ERR_NVS_NO_FREE_PAGES );
}
TEST_CASE("dump all performance data", "[nvs]")
{
std::cout << "====================" << std::endl << "Dumping benchmarks" << std::endl;
std::cout << s_perf.str() << std::endl;
std::cout << "====================" << std::endl;
}