esp-idf/components/esp_psram/mmu_psram_flash.c

247 wiersze
9.7 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @Backgrounds
*
* This file contains 2 parts:
* 1. Feature: Copy Flash content to PSRAM. Related APIs are private:
* - mmu_config_psram_text_segment()
* - mmu_config_psram_rodata_segment()
*
* 2. Private APIs used by `flash_mmap.c` and `cache_utils.c`
* APIs in 2 are due to lack of MMU driver. There will be an MMU driver to maintain vaddr range.
* APIs in 2 will be refactored when MMU driver is ready
*/
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_log.h"
#include "esp_attr.h"
#include "soc/ext_mem_defs.h"
#include "hal/cache_types.h"
#include "hal/cache_ll.h"
#include "esp_private/mmu_psram_flash.h"
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/cache.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/cache.h"
#endif
/*----------------------------------------------------------------------------
Part 1 APIs (See @Backgrounds on top of this file)
-------------------------------------------------------------------------------*/
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
//page_size - 1, where page_size on s2 and s3 is always 0x10000. To be refactored by MMU driver
#define INVALID_PHY_PAGE 0xffff
const static char *TAG = "mmu_psram";
//TODO IDF-4387
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
esp_err_t mmu_config_psram_text_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page)
{
uint32_t page_id = start_page;
uint32_t flash_pages = 0;
#if CONFIG_IDF_TARGET_ESP32S2
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped);
#elif CONFIG_IDF_TARGET_ESP32S3
flash_pages += Cache_Count_Flash_Pages(CACHE_IBUS, &page0_mapped);
#endif
if ((flash_pages + page_id) > BYTES_TO_MMU_PAGE(psram_size)) {
ESP_EARLY_LOGE(TAG, "PSRAM space not enough for the Flash instructions, need %d B, from %d B to %d B",
MMU_PAGE_TO_BYTES(flash_pages), MMU_PAGE_TO_BYTES(start_page), MMU_PAGE_TO_BYTES(flash_pages + page_id));
return ESP_FAIL;
}
//Enable the most high bus, which is used for copying FLASH .text to PSRAM
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, SOC_EXTRAM_DATA_HIGH, 0);
cache_ll_l1_enable_bus(0, bus_mask);
#if !CONFIG_FREERTOS_UNICORE
bus_mask = cache_ll_l1_get_bus(1, SOC_EXTRAM_DATA_HIGH, 0);
cache_ll_l1_enable_bus(1, bus_mask);
#endif
instruction_flash_page_info_init(page_id);
#if CONFIG_IDF_TARGET_ESP32S2
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, SOC_IRAM0_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, SOC_IRAM1_ADDRESS_LOW, page_id, &page0_page);
#elif CONFIG_IDF_TARGET_ESP32S3
page_id = Cache_Flash_To_SPIRAM_Copy(CACHE_IBUS, SOC_IRAM0_CACHE_ADDRESS_LOW, page_id, &page0_page);
#endif
ESP_EARLY_LOGV(TAG, "after copy instruction, page_id is %d", page_id);
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
*out_page = page_id - start_page;
return ESP_OK;
}
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
#if CONFIG_SPIRAM_RODATA
esp_err_t mmu_config_psram_rodata_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page)
{
uint32_t page_id = start_page;
uint32_t flash_pages = 0;
#if CONFIG_IDF_TARGET_ESP32S2
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
#elif CONFIG_IDF_TARGET_ESP32S3
flash_pages += Cache_Count_Flash_Pages(CACHE_DBUS, &page0_mapped);
#endif
if ((flash_pages + page_id) > BYTES_TO_MMU_PAGE(psram_size)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, need to copy to %d B.", MMU_PAGE_TO_BYTES(flash_pages + page_id));
return ESP_FAIL;
}
//Enable the most high bus, which is used for copying FLASH .text to PSRAM
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, SOC_EXTRAM_DATA_HIGH, 0);
cache_ll_l1_enable_bus(0, bus_mask);
#if !CONFIG_FREERTOS_UNICORE
bus_mask = cache_ll_l1_get_bus(1, SOC_EXTRAM_DATA_HIGH, 0);
cache_ll_l1_enable_bus(1, bus_mask);
#endif
rodata_flash_page_info_init(page_id);
#if CONFIG_IDF_TARGET_ESP32S2
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, SOC_DROM0_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, SOC_DRAM0_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, SOC_DRAM1_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, SOC_DPORT_ADDRESS_LOW, page_id, &page0_page);
#elif CONFIG_IDF_TARGET_ESP32S3
page_id = Cache_Flash_To_SPIRAM_Copy(CACHE_DBUS, SOC_DRAM0_CACHE_ADDRESS_LOW, page_id, &page0_page);
#endif
ESP_EARLY_LOGV(TAG, "after copy rodata, page_id is %d", page_id);
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
*out_page = page_id - start_page;
return ESP_OK;
}
#endif //#if CONFIG_SPIRAM_RODATA
/*----------------------------------------------------------------------------
Part 2 APIs (See @Backgrounds on top of this file)
-------------------------------------------------------------------------------*/
extern int _instruction_reserved_start;
extern int _instruction_reserved_end;
extern int _rodata_reserved_start;
extern int _rodata_reserved_end;
//------------------------------------Copy Flash .text to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
static uint32_t instruction_in_spiram;
static uint32_t instr_start_page;
static uint32_t instr_end_page;
static int instr_flash2spiram_offs;
/**
* - These logics are abstracted from the PSRAM driver
* - These functions are only required by `flash_mmap.c` for converting paddr to vaddr, and vice versa
* - The `flash_mmpa.c` will be rewritten into MMU driver
*
* Therefore, keep the APIs here for now
*/
void instruction_flash_page_info_init(uint32_t psram_start_physical_page)
{
#if CONFIG_IDF_TARGET_ESP32S2
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & SOC_MMU_VADDR_MASK) / MMU_PAGE_SIZE;
instr_start_page = ((volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START))[instr_mmu_offset];
#elif CONFIG_IDF_TARGET_ESP32S3
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
instr_start_page = *((volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START));
#endif
instr_start_page &= SOC_MMU_VALID_VAL_MASK;
instr_end_page = instr_start_page + instr_page_cnt - 1;
instr_flash2spiram_offs = instr_start_page - psram_start_physical_page;
instruction_in_spiram = 1;
ESP_DRAM_LOGV("mmu_psram", "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", instr_start_page, psram_start_physical_page, instr_flash2spiram_offs);
}
uint32_t esp_spiram_instruction_access_enabled(void)
{
return instruction_in_spiram;
}
int instruction_flash2spiram_offset(void)
{
return instr_flash2spiram_offs;
}
uint32_t instruction_flash_start_page_get(void)
{
return instr_start_page;
}
uint32_t instruction_flash_end_page_get(void)
{
return instr_end_page;
}
#endif //CONFIG_SPIRAM_FETCH_INSTRUCTIONS
#if CONFIG_SPIRAM_RODATA
//------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
static uint32_t rodata_in_spiram;
static int rodata_flash2spiram_offs;
static uint32_t rodata_start_page;
static uint32_t rodata_end_page;
/**
* - These logics are abstracted from the PSRAM driver
* - These functions are only required by `flash_mmap.c` for converting paddr to vaddr, and vice versa
* - The `flash_mmpa.c` will be rewritten into MMU driver
*
* Therefore, keep the APIs here for now
*/
void rodata_flash_page_info_init(uint32_t psram_start_physical_page)
{
#if CONFIG_IDF_TARGET_ESP32S2
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & SOC_MMU_VADDR_MASK) / MMU_PAGE_SIZE;
rodata_start_page = ((volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START))[rodata_mmu_offset];
#elif CONFIG_IDF_TARGET_ESP32S3
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~(MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
#endif
rodata_start_page &= SOC_MMU_VALID_VAL_MASK;
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
rodata_flash2spiram_offs = rodata_start_page - psram_start_physical_page;
rodata_in_spiram = 1;
ESP_DRAM_LOGV("mmu_psram", "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", rodata_start_page, psram_start_physical_page, rodata_flash2spiram_offs);
}
uint32_t esp_spiram_rodata_access_enabled(void)
{
return rodata_in_spiram;
}
int rodata_flash2spiram_offset(void)
{
return rodata_flash2spiram_offs;
}
uint32_t rodata_flash_start_page_get(void)
{
return rodata_start_page;
}
uint32_t rodata_flash_end_page_get(void)
{
return rodata_end_page;
}
#endif //#if CONFIG_SPIRAM_RODATA