esp-idf/components/hal/adc_hal.c

669 wiersze
24 KiB
C

/*
* SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include "sdkconfig.h"
#include "hal/adc_hal.h"
#include "hal/adc_hal_conf.h"
#include "hal/assert.h"
#include "soc/lldesc.h"
#include "soc/soc_caps.h"
#if CONFIG_IDF_TARGET_ESP32
//ADC utilises I2S0 DMA on ESP32
#include "hal/i2s_ll.h"
#include "hal/i2s_types.h"
#include "soc/i2s_struct.h"
#endif
#if CONFIG_IDF_TARGET_ESP32S2
//ADC utilises SPI3 DMA on ESP32S2
#include "hal/spi_ll.h"
#include "soc/spi_struct.h"
#endif
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
/**
* For chips without RTC controller, Digital controller is used to trigger an ADC single read.
*/
#include "esp_rom_sys.h"
typedef enum {
ADC_EVENT_ADC1_DONE = BIT(0),
ADC_EVENT_ADC2_DONE = BIT(1),
} adc_hal_event_t;
#endif //SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
/*---------------------------------------------------------------
Define all ADC DMA required operations here
---------------------------------------------------------------*/
#if SOC_GDMA_SUPPORTED
#define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask)
#define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true)
#define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false)
#define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan)
#define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan)
#define adc_dma_ll_rx_start(dev, chan, addr) do { \
gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \
gdma_ll_rx_start(dev, chan); \
} while (0)
#define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
#define adc_ll_digi_reset(dev) adc_ll_digi_reset()
#define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
#define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
//ADC utilises SPI3 DMA on ESP32S2
#elif CONFIG_IDF_TARGET_ESP32S2
#define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask)
#define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask)
#define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask)
#define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask)
#define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan)
#define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan)
#define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr)
#define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan)
#define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
#define adc_ll_digi_reset(dev) adc_ll_digi_reset()
#define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
#define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
//ADC utilises I2S0 DMA on ESP32
#else //CONFIG_IDF_TARGET_ESP32
#define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;})
#define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask)
#define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0)
#define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0)
#define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev)
#define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev)
#define adc_dma_ll_rx_start(dev, chan, address) do { \
((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \
i2s_ll_enable_dma(dev, 1); \
((i2s_dev_t *)(dev))->in_link.start = 1; \
} while (0)
#define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;})
#define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0)
#define adc_ll_digi_reset(dev) do { \
i2s_ll_rx_reset(dev); \
i2s_ll_rx_reset_fifo(dev); \
} while (0)
#define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev)
#define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev)
#define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0
#define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0)
//ESP32 ADC uses the DMA through I2S. The I2S needs to be configured.
#define I2S_BASE_CLK (2*APB_CLK_FREQ)
#define SAMPLE_BITS 16
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 2
#define ADC_LL_CLKM_DIV_B_DEFAULT 0
#define ADC_LL_CLKM_DIV_A_DEFAULT 1
#endif
void adc_hal_init(void)
{
// Set internal FSM wait time, fixed value.
adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
}
#if SOC_ADC_ARBITER_SUPPORTED
void adc_hal_arbiter_config(adc_arbiter_t *config)
{
adc_ll_set_arbiter_work_mode(config->mode);
adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
}
#endif // #if SOC_ADC_ARBITER_SUPPORTED
void adc_hal_digi_deinit(adc_hal_context_t *hal)
{
adc_ll_digi_trigger_disable(hal->dev);
adc_ll_digi_dma_disable();
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_reset(hal->dev);
adc_ll_digi_controller_clk_disable();
}
/*---------------------------------------------------------------
Controller Setting
---------------------------------------------------------------*/
static adc_ll_controller_t get_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
{
if (unit == ADC_NUM_1) {
switch (work_mode) {
#if SOC_ULP_SUPPORTED
case ADC_HAL_ULP_MODE:
return ADC_LL_CTRL_ULP;
#endif
case ADC_HAL_SINGLE_READ_MODE:
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
return ADC_LL_CTRL_DIG;
#elif SOC_ADC_RTC_CTRL_SUPPORTED
return ADC_LL_CTRL_RTC;
#endif
case ADC_HAL_CONTINUOUS_READ_MODE:
return ADC_LL_CTRL_DIG;
default:
abort();
}
} else {
switch (work_mode) {
#if SOC_ULP_SUPPORTED
case ADC_HAL_ULP_MODE:
return ADC_LL_CTRL_ULP;
#endif
#if !SOC_ADC_ARBITER_SUPPORTED //No ADC2 arbiter on ESP32
case ADC_HAL_SINGLE_READ_MODE:
return ADC_LL_CTRL_RTC;
case ADC_HAL_CONTINUOUS_READ_MODE:
return ADC_LL_CTRL_DIG;
case ADC_HAL_PWDET_MODE:
return ADC_LL_CTRL_PWDET;
default:
abort();
#else
default:
return ADC_LL_CTRL_ARB;
#endif
}
}
}
void adc_hal_set_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode)
{
adc_ll_controller_t ctrlr = get_controller(unit, work_mode);
adc_ll_set_controller(unit, ctrlr);
}
/*---------------------------------------------------------------
DMA read
---------------------------------------------------------------*/
static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
{
#if CONFIG_IDF_TARGET_ESP32
return ADC_LL_DIGI_CONV_ONLY_ADC1;
#endif
#if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
return ADC_LL_DIGI_CONV_ALTER_UNIT;
#elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
switch (convert_mode) {
case ADC_CONV_SINGLE_UNIT_1:
return ADC_LL_DIGI_CONV_ONLY_ADC1;
case ADC_CONV_SINGLE_UNIT_2:
return ADC_LL_DIGI_CONV_ONLY_ADC2;
case ADC_CONV_BOTH_UNIT:
return ADC_LL_DIGI_CONV_BOTH_UNIT;
case ADC_CONV_ALTER_UNIT:
return ADC_LL_DIGI_CONV_ALTER_UNIT;
default:
abort();
}
#endif
}
/**
* For esp32s2 and later chips
* - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock.
* Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
* - Enable clock and select clock source for ADC digital controller.
* For esp32, use I2S clock
*/
static void adc_hal_digi_sample_freq_config(adc_hal_context_t *hal, uint32_t freq)
{
#if !CONFIG_IDF_TARGET_ESP32
uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq;
//set sample interval
adc_ll_digi_set_trigger_interval(interval);
//Here we set the clock divider factor to make the digital clock to 5M Hz
adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
adc_ll_digi_clk_sel(0); //use APB
#else
i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_D2CLK); /*!< Clock from PLL_D2_CLK(160M)*/
uint32_t bck = I2S_BASE_CLK / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_B_DEFAULT / ADC_LL_CLKM_DIV_A_DEFAULT) / 2 / freq;
i2s_ll_mclk_div_t clk = {
.mclk_div = ADC_LL_CLKM_DIV_NUM_DEFAULT,
.a = ADC_LL_CLKM_DIV_A_DEFAULT,
.b = ADC_LL_CLKM_DIV_B_DEFAULT,
};
i2s_ll_rx_set_clk(hal->dev, &clk);
i2s_ll_rx_set_bck_div_num(hal->dev, bck);
#endif
}
void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
{
#if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
//Only one pattern table, this variable is for readability
const int pattern_both = 0;
adc_ll_digi_clear_pattern_table(pattern_both);
adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
for (int i = 0; i < cfg->adc_pattern_len; i++) {
adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
}
#elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
uint32_t adc1_pattern_idx = 0;
uint32_t adc2_pattern_idx = 0;
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
for (int i = 0; i < cfg->adc_pattern_len; i++) {
if (cfg->adc_pattern[i].unit == ADC_NUM_1) {
adc_ll_digi_set_pattern_table(ADC_NUM_1, adc1_pattern_idx, cfg->adc_pattern[i]);
adc1_pattern_idx++;
} else if (cfg->adc_pattern[i].unit == ADC_NUM_2) {
adc_ll_digi_set_pattern_table(ADC_NUM_2, adc2_pattern_idx, cfg->adc_pattern[i]);
adc2_pattern_idx++;
} else {
abort();
}
}
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, adc1_pattern_idx);
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, adc2_pattern_idx);
#endif
if (cfg->conv_limit_en) {
adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num);
adc_ll_digi_convert_limit_enable();
} else {
adc_ll_digi_convert_limit_disable();
}
adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode));
//clock and sample frequency
adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz);
}
void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
{
hal->desc_dummy_head.next = hal->rx_desc;
hal->dev = config->dev;
hal->desc_max_num = config->desc_max_num;
hal->dma_chan = config->dma_chan;
hal->eof_num = config->eof_num;
}
void adc_hal_digi_init(adc_hal_context_t *hal)
{
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
#if CONFIG_IDF_TARGET_ESP32
i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
i2s_ll_rx_enable_mono_mode(hal->dev, 1);
i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
i2s_ll_enable_builtin_adc(hal->dev, 1);
#endif
#if CONFIG_IDF_TARGET_ESP32C3
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
#endif
}
static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
{
HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
HAL_ASSERT((size % 4) == 0);
uint32_t n = 0;
while (num--) {
desc[n] = (dma_descriptor_t) {
.dw0.size = size,
.dw0.length = 0,
.dw0.suc_eof = 0,
.dw0.owner = 1,
.buffer = data_buf,
.next = &desc[n+1]
};
data_buf += size;
n++;
}
desc[n-1].next = NULL;
}
void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf)
{
//stop peripheral and DMA
adc_hal_digi_stop(hal);
//reset DMA
adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
//reset peripheral
adc_ll_digi_reset(hal->dev);
//reset the current descriptor address
hal->cur_desc_ptr = &hal->desc_dummy_head;
adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
//start DMA
adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc);
//connect DMA and peripheral
adc_ll_digi_dma_enable();
//start ADC
adc_ll_digi_trigger_enable(hal->dev);
}
#if !SOC_GDMA_SUPPORTED
intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal)
{
return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
}
bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask)
{
return adc_dma_ll_rx_get_intr(hal->dev, mask);
}
#endif //#if !SOC_GDMA_SUPPORTED
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
{
HAL_ASSERT(hal->cur_desc_ptr);
if (!hal->cur_desc_ptr->next) {
return ADC_HAL_DMA_DESC_NULL;
}
if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
return ADC_HAL_DMA_DESC_WAITING;
}
hal->cur_desc_ptr = hal->cur_desc_ptr->next;
*cur_desc = hal->cur_desc_ptr;
return ADC_HAL_DMA_DESC_VALID;
}
void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
{
adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
}
void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
{
adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
}
void adc_hal_digi_stop(adc_hal_context_t *hal)
{
//stop ADC
adc_ll_digi_trigger_disable(hal->dev);
//stop DMA
adc_dma_ll_rx_stop(hal->dev, hal->dma_chan);
//disconnect DMA and peripheral
adc_ll_digi_dma_disable();
}
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
/**
* For chips without RTC controller, Digital controller is used to trigger an ADC single read.
*/
//--------------------INTR-------------------------------//
static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
{
adc_ll_intr_t intr_mask = 0;
if (event & ADC_EVENT_ADC1_DONE) {
intr_mask |= ADC_LL_INTR_ADC1_DONE;
}
if (event & ADC_EVENT_ADC2_DONE) {
intr_mask |= ADC_LL_INTR_ADC2_DONE;
}
return intr_mask;
}
static void adc_hal_intr_clear(adc_hal_event_t event)
{
adc_ll_intr_clear(get_event_intr(event));
}
static bool adc_hal_intr_get_raw(adc_hal_event_t event)
{
return adc_ll_intr_get_raw(get_event_intr(event));
}
//--------------------Single Read-------------------------------//
static void adc_hal_onetime_start(void)
{
/**
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
* clock cycle.
*
* This limitation will be removed in hardware future versions.
*
*/
uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
uint32_t delay = (1000 * 1000) / digi_clk + 1;
//3 ADC digital controller clock cycle
delay = delay * 3;
//This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
if (digi_clk >= APB_CLK_FREQ/8) {
delay = 0;
}
adc_ll_onetime_start(false);
esp_rom_delay_us(delay);
adc_ll_onetime_start(true);
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
}
static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
{
if (adc_n == ADC_NUM_1) {
*out_raw = adc_ll_adc1_read();
} else if (adc_n == ADC_NUM_2) {
*out_raw = adc_ll_adc2_read();
if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
return ESP_ERR_INVALID_STATE;
}
}
return ESP_OK;
}
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
{
esp_err_t ret;
adc_hal_event_t event;
if (adc_n == ADC_NUM_1) {
event = ADC_EVENT_ADC1_DONE;
} else {
event = ADC_EVENT_ADC2_DONE;
}
adc_hal_intr_clear(event);
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
adc_ll_onetime_sample_enable(adc_n, true);
adc_ll_onetime_set_channel(adc_n, channel);
//Trigger single read.
adc_hal_onetime_start();
while (!adc_hal_intr_get_raw(event));
ret = adc_hal_single_read(adc_n, out_raw);
//HW workaround: when enabling periph clock, this should be false
adc_ll_onetime_sample_enable(adc_n, false);
return ret;
}
#else // #if SOC_ADC_RTC_CTRL_SUPPORTED
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
{
adc_ll_rtc_enable_channel(adc_n, channel);
adc_ll_rtc_start_convert(adc_n, channel);
while (adc_ll_rtc_convert_is_done(adc_n) != true);
*out_raw = adc_ll_rtc_get_convert_value(adc_n);
if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
/*---------------------------------------------------------------
ADC calibration setting
---------------------------------------------------------------*/
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
void adc_hal_calibration_init(adc_ll_num_t adc_n)
{
adc_ll_calibration_init(adc_n);
}
static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
{
if (param != s_previous_init_code[adc_n]) {
adc_ll_set_calibration_param(adc_n, param);
s_previous_init_code[adc_n] = param;
}
}
#if SOC_ADC_RTC_CTRL_SUPPORTED
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
adc_hal_set_controller(adc_n, ADC_HAL_SINGLE_READ_MODE); //Set controller
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
adc_ll_rtc_disable_channel(adc_n);
adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
} else {
adc_ll_rtc_enable_channel(adc_n, channel);
adc_ll_set_atten(adc_n, channel, atten);
}
}
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
{
adc_ll_rtc_start_convert(adc_n, channel);
while (adc_ll_rtc_convert_is_done(adc_n) != true);
return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
}
//For those RTC controller not supported chips, they use digital controller to do the single read. e.g.: esp32c3
#elif SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
} else {
adc_ll_onetime_set_channel(adc_n, channel);
}
adc_ll_onetime_set_atten(atten);
adc_ll_onetime_sample_enable(adc_n, true);
}
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
{
adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
adc_ll_onetime_start(false);
esp_rom_delay_us(5);
adc_ll_onetime_start(true);
while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
uint32_t read_val = -1;
if (adc_n == ADC_NUM_1) {
read_val = adc_ll_adc1_read();
} else if (adc_n == ADC_NUM_2) {
read_val = adc_ll_adc2_read();
if (adc_ll_analysis_raw_data(adc_n, read_val)) {
return -1;
}
}
return read_val;
}
#endif //Do single read via DIGI controller or RTC controller
#define ADC_HAL_CAL_TIMES (10)
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
if (adc_n == ADC_NUM_2) {
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
}
cal_setup(adc_n, channel, atten, internal_gnd);
adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
uint32_t code_sum = 0;
uint32_t code_h = 0;
uint32_t code_l = 0;
uint32_t chk_code = 0;
for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
code_h = ADC_HAL_CAL_OFFSET_RANGE;
code_l = 0;
chk_code = (code_h + code_l) / 2;
adc_ll_set_calibration_param(adc_n, chk_code);
uint32_t self_cal = read_cal_channel(adc_n, channel);
while (code_h - code_l > 1) {
if (self_cal == 0) {
code_h = chk_code;
} else {
code_l = chk_code;
}
chk_code = (code_h + code_l) / 2;
adc_ll_set_calibration_param(adc_n, chk_code);
self_cal = read_cal_channel(adc_n, channel);
if ((code_h - code_l == 1)) {
chk_code += 1;
adc_ll_set_calibration_param(adc_n, chk_code);
self_cal = read_cal_channel(adc_n, channel);
}
}
code_list[rpt] = chk_code;
code_sum += chk_code;
}
code_l = code_list[0];
code_h = code_list[0];
for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
code_l = MIN(code_l, code_list[i]);
code_h = MAX(code_h, code_list[i]);
}
chk_code = code_h + code_l;
uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
adc_ll_calibration_finish(adc_n);
return ret;
}
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED