esp-idf/components/driver/uart.c

1332 wiersze
56 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_clk.h"
#include "malloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "freertos/ringbuf.h"
#include "soc/dport_reg.h"
#include "soc/uart_struct.h"
#include "driver/uart.h"
#include "driver/gpio.h"
#define XOFF (char)0x13
#define XON (char)0x11
static const char* UART_TAG = "uart";
#define UART_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
#define UART_EMPTY_THRESH_DEFAULT (10)
#define UART_FULL_THRESH_DEFAULT (120)
#define UART_TOUT_THRESH_DEFAULT (10)
#define UART_TX_IDLE_NUM_DEFAULT (0)
#define UART_PATTERN_DET_QLEN_DEFAULT (10)
#define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
#define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
#define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
#define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
typedef struct {
uart_event_type_t type; /*!< UART TX data type */
struct {
int brk_len;
size_t size;
uint8_t data[0];
} tx_data;
} uart_tx_data_t;
typedef struct {
int wr;
int rd;
int len;
int* data;
} uart_pat_rb_t;
typedef struct {
uart_port_t uart_num; /*!< UART port number*/
int queue_size; /*!< UART event queue size*/
QueueHandle_t xQueueUart; /*!< UART queue handler*/
intr_handle_t intr_handle; /*!< UART interrupt handle*/
//rx parameters
int rx_buffered_len; /*!< UART cached data length */
SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
int rx_buf_size; /*!< RX ring buffer size */
RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
uart_pat_rb_t rx_pattern_pos;
//tx parameters
SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
int tx_buf_size; /*!< TX ring buffer size */
RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
uint32_t tx_len_cur;
uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
} uart_obj_t;
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
/* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.bit_num = data_bit;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
*(data_bit) = UART[uart_num]->conf0.bit_num;
return ESP_OK;
}
esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
//workaround for hardware bug, when uart stop bit set as 2-bit mode.
if (stop_bit == UART_STOP_BITS_2) {
stop_bit = UART_STOP_BITS_1;
UART[uart_num]->rs485_conf.dl1_en = 1;
} else {
UART[uart_num]->rs485_conf.dl1_en = 0;
}
UART[uart_num]->conf0.stop_bit_num = stop_bit;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
//workaround for hardware bug, when uart stop bit set as 2-bit mode.
if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
(*stop_bit) = UART_STOP_BITS_2;
} else {
(*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
}
return ESP_OK;
}
esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.parity = parity_mode & 0x1;
UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
int val = UART[uart_num]->conf0.val;
if(val & UART_PARITY_EN_M) {
if(val & UART_PARITY_M) {
(*parity_mode) = UART_PARITY_ODD;
} else {
(*parity_mode) = UART_PARITY_EVEN;
}
} else {
(*parity_mode) = UART_PARITY_DISABLE;
}
return ESP_OK;
}
esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
esp_err_t ret = ESP_OK;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
int uart_clk_freq;
if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
/* this UART has been configured to use REF_TICK */
uart_clk_freq = REF_CLK_FREQ;
} else {
uart_clk_freq = esp_clk_apb_freq();
}
uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
if (clk_div < 16) {
/* baud rate is too high for this clock frequency */
ret = ESP_ERR_INVALID_ARG;
} else {
UART[uart_num]->clk_div.div_int = clk_div >> 4;
UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
(*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
return ESP_OK;
}
esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
UART[uart_num]->swfc_conf.xon_char = XON;
UART[uart_num]->swfc_conf.xoff_char = XOFF;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
//only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
UART[uart_num]->conf1.rx_flow_en = 1;
} else {
UART[uart_num]->conf1.rx_flow_en = 0;
}
if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
UART[uart_num]->conf0.tx_flow_en = 1;
} else {
UART[uart_num]->conf0.tx_flow_en = 0;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
if(UART[uart_num]->conf1.rx_flow_en) {
val |= UART_HW_FLOWCTRL_RTS;
}
if(UART[uart_num]->conf0.tx_flow_en) {
val |= UART_HW_FLOWCTRL_CTS;
}
(*flow_ctrl) = val;
return ESP_OK;
}
static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
//Due to hardware issue, we can not use fifo_rst to reset uart fifo.
//See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
// we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
READ_PERI_REG(UART_FIFO_REG(uart_num));
}
return ESP_OK;
}
esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
//intr_clr register is write-only
UART[uart_num]->int_clr.val = clr_mask;
return ESP_OK;
}
esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
free(pdata);
}
return ESP_OK;
}
static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
esp_err_t ret = ESP_OK;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int next = p_pos->wr + 1;
if (next >= p_pos->len) {
next = 0;
}
if (next == p_pos->rd) {
ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
ret = ESP_FAIL;
} else {
p_pos->data[p_pos->wr] = pos;
p_pos->wr = next;
ret = ESP_OK;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
return ESP_ERR_INVALID_STATE;
} else {
esp_err_t ret = ESP_OK;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
if (p_pos->rd == p_pos->wr) {
ret = ESP_FAIL;
} else {
p_pos->rd++;
}
if (p_pos->rd >= p_pos->len) {
p_pos->rd = 0;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
}
static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int rd = p_pos->rd;
while(rd != p_pos->wr) {
p_pos->data[rd] -= diff_len;
int rd_rec = rd;
rd ++;
if (rd >= p_pos->len) {
rd = 0;
}
if (p_pos->data[rd_rec] < 0) {
p_pos->rd = rd;
}
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
int uart_pattern_pop_pos(uart_port_t uart_num)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int pos = -1;
if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
pos = pat_pos->data[pat_pos->rd];
uart_pattern_dequeue(uart_num);
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return pos;
}
esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
int* pdata = (int*) malloc(queue_length * sizeof(int));
if(pdata == NULL) {
return ESP_ERR_NO_MEM;
}
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
free(ptmp);
return ESP_OK;
}
esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
UART[uart_num]->at_cmd_char.data = pattern_chr;
UART[uart_num]->at_cmd_char.char_num = chr_num;
UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
}
esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
{
return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
}
esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
{
return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
}
esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
{
return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
}
esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
{
return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
}
esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_clr.txfifo_empty = 1;
UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
{
int ret;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
switch(uart_num) {
case UART_NUM_1:
ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break;
case UART_NUM_2:
ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break;
case UART_NUM_0:
default:
ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
esp_err_t uart_isr_free(uart_port_t uart_num)
{
esp_err_t ret;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
p_uart_obj[uart_num]->intr_handle=NULL;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
//internal signal can be output to multiple GPIO pads
//only one GPIO pad can connect with input signal
esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
int tx_sig, rx_sig, rts_sig, cts_sig;
switch(uart_num) {
case UART_NUM_0:
tx_sig = U0TXD_OUT_IDX;
rx_sig = U0RXD_IN_IDX;
rts_sig = U0RTS_OUT_IDX;
cts_sig = U0CTS_IN_IDX;
break;
case UART_NUM_1:
tx_sig = U1TXD_OUT_IDX;
rx_sig = U1RXD_IN_IDX;
rts_sig = U1RTS_OUT_IDX;
cts_sig = U1CTS_IN_IDX;
break;
case UART_NUM_2:
tx_sig = U2TXD_OUT_IDX;
rx_sig = U2RXD_IN_IDX;
rts_sig = U2RTS_OUT_IDX;
cts_sig = U2CTS_IN_IDX;
break;
case UART_NUM_MAX:
default:
tx_sig = U0TXD_OUT_IDX;
rx_sig = U0RXD_IN_IDX;
rts_sig = U0RTS_OUT_IDX;
cts_sig = U0CTS_IN_IDX;
break;
}
if(tx_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
gpio_set_level(tx_io_num, 1);
gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
}
if(rx_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
gpio_matrix_in(rx_io_num, rx_sig, 0);
}
if(rts_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
}
if(cts_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
gpio_matrix_in(cts_io_num, cts_sig, 0);
}
return ESP_OK;
}
esp_err_t uart_set_rts(uart_port_t uart_num, int level)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.sw_rts = level & 0x1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->conf0.sw_dtr = level & 0x1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->idle_conf.tx_idle_num = idle_num;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
{
esp_err_t r;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((uart_config), "param null", ESP_FAIL);
if(uart_num == UART_NUM_0) {
periph_module_enable(PERIPH_UART0_MODULE);
} else if(uart_num == UART_NUM_1) {
periph_module_enable(PERIPH_UART1_MODULE);
} else if(uart_num == UART_NUM_2) {
periph_module_enable(PERIPH_UART2_MODULE);
}
r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
if (r != ESP_OK) return r;
UART[uart_num]->conf0.val =
(uart_config->parity << UART_PARITY_S)
| (uart_config->data_bits << UART_BIT_NUM_S)
| ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
| (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
r = uart_set_baudrate(uart_num, uart_config->baud_rate);
if (r != ESP_OK) return r;
r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
if (r != ESP_OK) return r;
r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
return r;
}
esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((intr_conf), "param null", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_clr.val = UART_INTR_MASK;
if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
UART[uart_num]->conf1.rx_tout_en = 1;
} else {
UART[uart_num]->conf1.rx_tout_en = 0;
}
if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
}
if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
}
UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
{
int cnt = 0;
int len = length;
while (len >= 0) {
if (buf[len] == pat_chr) {
cnt++;
} else {
cnt = 0;
}
if (cnt >= pat_num) {
break;
}
len --;
}
return len;
}
//internal isr handler for default driver code.
static void uart_rx_intr_handler_default(void *param)
{
uart_obj_t *p_uart = (uart_obj_t*) param;
uint8_t uart_num = p_uart->uart_num;
uart_dev_t* uart_reg = UART[uart_num];
int rx_fifo_len = uart_reg->status.rxfifo_cnt;
uint8_t buf_idx = 0;
uint32_t uart_intr_status = UART[uart_num]->int_st.val;
uart_event_t uart_event;
portBASE_TYPE HPTaskAwoken = 0;
static uint8_t pat_flg = 0;
while(uart_intr_status != 0x0) {
buf_idx = 0;
uart_event.type = UART_EVENT_MAX;
if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
if(p_uart->tx_waiting_brk) {
continue;
}
//TX semaphore will only be used when tx_buf_size is zero.
if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
p_uart->tx_waiting_fifo = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
} else {
//We don't use TX ring buffer, because the size is zero.
if(p_uart->tx_buf_size == 0) {
continue;
}
int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
bool en_tx_flg = false;
//We need to put a loop here, in case all the buffer items are very short.
//That would cause a watch_dog reset because empty interrupt happens so often.
//Although this is a loop in ISR, this loop will execute at most 128 turns.
while(tx_fifo_rem) {
if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
size_t size;
p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
if(p_uart->tx_head) {
//The first item is the data description
//Get the first item to get the data information
if(p_uart->tx_len_tot == 0) {
p_uart->tx_ptr = NULL;
p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
if(p_uart->tx_head->type == UART_DATA_BREAK) {
p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
p_uart->tx_brk_flg = 1;
p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
}
//We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
}else if(p_uart->tx_ptr == NULL) {
//Update the TX item pointer, we will need this to return item to buffer.
p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
en_tx_flg = true;
p_uart->tx_len_cur = size;
}
}
else {
//Can not get data from ring buffer, return;
break;
}
}
if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
//To fill the TX FIFO.
int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
}
p_uart->tx_len_tot -= send_len;
p_uart->tx_len_cur -= send_len;
tx_fifo_rem -= send_len;
if (p_uart->tx_len_cur == 0) {
//Return item to ring buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
p_uart->tx_head = NULL;
p_uart->tx_ptr = NULL;
//Sending item done, now we need to send break if there is a record.
//Set TX break signal after FIFO is empty
if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.tx_brk_done = 0;
uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
uart_reg->conf0.txd_brk = 1;
uart_reg->int_clr.tx_brk_done = 1;
uart_reg->int_ena.tx_brk_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
p_uart->tx_waiting_brk = 1;
} else {
//enable TX empty interrupt
en_tx_flg = true;
}
} else {
//enable TX empty interrupt
en_tx_flg = true;
}
}
}
if (en_tx_flg) {
uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
}
}
}
else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
|| (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
|| (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
) {
rx_fifo_len = uart_reg->status.rxfifo_cnt;
if(pat_flg == 1) {
uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
pat_flg = 0;
}
if (p_uart->rx_buffer_full_flg == false) {
//We have to read out all data in RX FIFO to clear the interrupt signal
while (buf_idx < rx_fifo_len) {
p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
}
uint8_t pat_chr = uart_reg->at_cmd_char.data;
int pat_num = uart_reg->at_cmd_char.char_num;
int pat_idx = -1;
//Get the buffer from the FIFO
if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
uart_event.type = UART_PATTERN_DET;
uart_event.size = rx_fifo_len;
pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
} else {
//After Copying the Data From FIFO ,Clear intr_status
uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
uart_event.type = UART_DATA;
uart_event.size = rx_fifo_len;
}
p_uart->rx_stash_len = rx_fifo_len;
//If we fail to push data to ring buffer, we will have to stash the data, and send next time.
//Mainly for applications that uses flow control or small ring buffer.
if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
if (uart_event.type == UART_PATTERN_DET) {
if (rx_fifo_len < pat_num) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else {
uart_pattern_enqueue(uart_num,
pat_idx <= -1 ?
//can not find the pattern in buffer,
p_uart->rx_buffered_len + p_uart->rx_stash_len :
// find the pattern in buffer
p_uart->rx_buffered_len + pat_idx);
}
if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
}
}
uart_event.type = UART_BUFFER_FULL;
p_uart->rx_buffer_full_flg = true;
} else {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
if (rx_fifo_len < pat_num) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else if(pat_idx >= 0) {
// find pattern in statsh buffer.
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
}
}
p_uart->rx_buffered_len += p_uart->rx_stash_len;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
} else {
uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
uart_reg->int_clr.at_cmd_char_det = 1;
uart_event.type = UART_PATTERN_DET;
uart_event.size = rx_fifo_len;
pat_flg = 1;
}
}
} else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
// When fifo overflows, we reset the fifo.
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reset_rx_fifo(uart_num);
uart_reg->int_clr.rxfifo_ovf = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_FIFO_OVF;
} else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
uart_reg->int_clr.brk_det = 1;
uart_event.type = UART_BREAK;
} else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
uart_reg->int_clr.frm_err = 1;
uart_event.type = UART_FRAME_ERR;
} else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
uart_reg->int_clr.parity_err = 1;
uart_event.type = UART_PARITY_ERR;
} else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->conf0.txd_brk = 0;
uart_reg->int_ena.tx_brk_done = 0;
uart_reg->int_clr.tx_brk_done = 1;
if(p_uart->tx_brk_flg == 1) {
uart_reg->int_ena.txfifo_empty = 1;
}
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
if(p_uart->tx_brk_flg == 1) {
p_uart->tx_brk_flg = 0;
p_uart->tx_waiting_brk = 0;
} else {
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
}
} else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
} else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
uart_reg->int_clr.at_cmd_char_det = 1;
uart_event.type = UART_PATTERN_DET;
} else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
} else {
uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
uart_event.type = UART_EVENT_MAX;
}
if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ;
}
}
uart_intr_status = uart_reg->int_st.val;
}
}
/**************************************************************/
esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
BaseType_t res;
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
//Take tx_mux
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
if(res == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
ticks_to_wait = ticks_end - xTaskGetTickCount();
xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
ticks_to_wait = ticks_end - xTaskGetTickCount();
if(UART[uart_num]->status.txfifo_cnt == 0) {
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
//take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
if(res == pdFALSE) {
uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_ERR_TIMEOUT;
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
{
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->idle_conf.tx_brk_num = break_num;
UART[uart_num]->conf0.txd_brk = 1;
UART[uart_num]->int_clr.tx_brk_done = 1;
UART[uart_num]->int_ena.tx_brk_done = 1;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
//Fill UART tx_fifo and return a number,
//This function by itself is not thread-safe, always call from within a muxed section.
static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
{
uint8_t i = 0;
uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
for(i = 0; i < copy_cnt; i++) {
WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
}
return copy_cnt;
}
int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_CHECK(buffer, "buffer null", (-1));
if(len == 0) {
return 0;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return tx_len;
}
static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
{
if(size == 0) {
return 0;
}
size_t original_size = size;
//lock for uart_tx
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
if(p_uart_obj[uart_num]->tx_buf_size > 0) {
int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
int offset = 0;
uart_tx_data_t evt;
evt.tx_data.size = size;
evt.tx_data.brk_len = brk_len;
if(brk_en) {
evt.type = UART_DATA_BREAK;
} else {
evt.type = UART_DATA;
}
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
while(size > 0) {
int send_size = size > max_size / 2 ? max_size / 2 : size;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
size -= send_size;
offset += send_size;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
} else {
while(size) {
//semaphore for tx_fifo available
if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
if(sent < size) {
p_uart_obj[uart_num]->tx_waiting_fifo = true;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
size -= sent;
src += sent;
}
}
if(brk_en) {
uart_set_break(uart_num, brk_len);
xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return original_size;
}
int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
UART_CHECK(src, "buffer null", (-1));
return uart_tx_all(uart_num, src, size, 0, 0);
}
int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_CHECK((size > 0), "uart size error", (-1));
UART_CHECK((src), "uart data null", (-1));
UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
return uart_tx_all(uart_num, src, size, 1, brk_len);
}
int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((buf), "uart data null", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
uint8_t* data = NULL;
size_t size;
size_t copy_len = 0;
int len_tmp;
if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
return -1;
}
while(length) {
if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
if(data) {
p_uart_obj[uart_num]->rx_head_ptr = data;
p_uart_obj[uart_num]->rx_ptr = data;
p_uart_obj[uart_num]->rx_cur_remain = size;
} else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
}
if(p_uart_obj[uart_num]->rx_cur_remain > length) {
len_tmp = length;
} else {
len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
}
memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
uart_pattern_queue_update(uart_num, len_tmp);
p_uart_obj[uart_num]->rx_ptr += len_tmp;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
copy_len += len_tmp;
length -= len_tmp;
if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ptr = NULL;
if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if(res == pdTRUE) {
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
}
}
}
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
*size = p_uart_obj[uart_num]->rx_buffered_len;
return ESP_OK;
}
esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
esp_err_t uart_flush_input(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
uart_obj_t* p_uart = p_uart_obj[uart_num];
uint8_t* data;
size_t size;
//rx sem protect the ring buffer read related functions
xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
while(true) {
if(p_uart->rx_head_ptr) {
vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0;
p_uart->rx_head_ptr = NULL;
}
data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
if(data == NULL) {
break;
}
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= size;
uart_pattern_queue_update(uart_num, size);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if(res == pdTRUE) {
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
}
}
}
p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0;
p_uart->rx_head_ptr = NULL;
uart_reset_rx_fifo(uart_num);
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
xSemaphoreGive(p_uart->rx_mux);
return ESP_OK;
}
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
{
esp_err_t r;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
if(p_uart_obj[uart_num] == NULL) {
p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
if(p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "UART driver malloc error");
return ESP_FAIL;
}
p_uart_obj[uart_num]->uart_num = uart_num;
p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->queue_size = queue_size;
p_uart_obj[uart_num]->tx_ptr = NULL;
p_uart_obj[uart_num]->tx_head = NULL;
p_uart_obj[uart_num]->tx_len_tot = 0;
p_uart_obj[uart_num]->tx_brk_flg = 0;
p_uart_obj[uart_num]->tx_brk_len = 0;
p_uart_obj[uart_num]->tx_waiting_brk = 0;
p_uart_obj[uart_num]->rx_buffered_len = 0;
uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
if(uart_queue) {
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
*uart_queue = p_uart_obj[uart_num]->xQueueUart;
ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
} else {
p_uart_obj[uart_num]->xQueueUart = NULL;
}
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
p_uart_obj[uart_num]->tx_waiting_fifo = false;
p_uart_obj[uart_num]->rx_ptr = NULL;
p_uart_obj[uart_num]->rx_cur_remain = 0;
p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
if(tx_buffer_size > 0) {
p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
} else {
p_uart_obj[uart_num]->tx_ring_buf = NULL;
p_uart_obj[uart_num]->tx_buf_size = 0;
}
} else {
ESP_LOGE(UART_TAG, "UART driver already installed");
return ESP_FAIL;
}
r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
if (r!=ESP_OK) goto err;
uart_intr_config_t uart_intr = {
.intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
| UART_RXFIFO_TOUT_INT_ENA_M
| UART_FRM_ERR_INT_ENA_M
| UART_RXFIFO_OVF_INT_ENA_M
| UART_BRK_DET_INT_ENA_M
| UART_PARITY_ERR_INT_ENA_M,
.rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
.rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
.txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
};
r=uart_intr_config(uart_num, &uart_intr);
if (r!=ESP_OK) goto err;
return r;
err:
uart_driver_delete(uart_num);
return r;
}
//Make sure no other tasks are still using UART before you call this function
esp_err_t uart_driver_delete(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
if(p_uart_obj[uart_num] == NULL) {
ESP_LOGI(UART_TAG, "ALREADY NULL");
return ESP_OK;
}
esp_intr_free(p_uart_obj[uart_num]->intr_handle);
uart_disable_rx_intr(uart_num);
uart_disable_tx_intr(uart_num);
uart_pattern_link_free(uart_num);
if(p_uart_obj[uart_num]->tx_fifo_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_fifo_sem = NULL;
}
if(p_uart_obj[uart_num]->tx_done_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
p_uart_obj[uart_num]->tx_done_sem = NULL;
}
if(p_uart_obj[uart_num]->tx_brk_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
p_uart_obj[uart_num]->tx_brk_sem = NULL;
}
if(p_uart_obj[uart_num]->tx_mux) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
p_uart_obj[uart_num]->tx_mux = NULL;
}
if(p_uart_obj[uart_num]->rx_mux) {
vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
p_uart_obj[uart_num]->rx_mux = NULL;
}
if(p_uart_obj[uart_num]->xQueueUart) {
vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
p_uart_obj[uart_num]->xQueueUart = NULL;
}
if(p_uart_obj[uart_num]->rx_ring_buf) {
vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
p_uart_obj[uart_num]->rx_ring_buf = NULL;
}
if(p_uart_obj[uart_num]->tx_ring_buf) {
vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
p_uart_obj[uart_num]->tx_ring_buf = NULL;
}
free(p_uart_obj[uart_num]);
p_uart_obj[uart_num] = NULL;
if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
if(uart_num == UART_NUM_0) {
periph_module_disable(PERIPH_UART0_MODULE);
} else if(uart_num == UART_NUM_1) {
periph_module_disable(PERIPH_UART1_MODULE);
} else if(uart_num == UART_NUM_2) {
periph_module_disable(PERIPH_UART2_MODULE);
}
}
return ESP_OK;
}