…
|
||
---|---|---|
.. | ||
main | ||
CMakeLists.txt | ||
Makefile | ||
README.md | ||
partitions_example.csv | ||
sdkconfig.defaults |
README.md
Ethernet iperf Example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
Overview
This example demonstrates basic usage of iperf protocol to measure the throughout/bandwidth of Ethernet.
The cli environment in the example is based on the console component.
How to use example
Hardware Required
To run this example, it's recommended that you have an official ESP32 Ethernet development board - ESP32-Ethernet-Kit. This example should also work for 3rd party ESP32 board as long as it's integrated with a supported Ethernet PHY chip. Up until now, ESP-IDF supports up to four Ethernet PHY: LAN8720
, IP101
, DP83848
and RTL8201
, additional PHY drivers should be implemented by users themselves.
Besides that, esp_eth
component can drive third-party Ethernet module which integrates MAC and PHY and provides common communication interface (e.g. SPI, USB, etc). This example will take the DM9051 as an example, illustrating how to install the Ethernet driver in the same manner.
Pin Assignment
See common pin assignments for Ethernet examples from upper level.
Software Tools Preparation
- Install iperf tool on PC
- Debian/Ubuntu:
sudo apt-get install iperf
- macOS:
brew install iperf
(if using Homebrew) orsudo port install iperf
(if using MacPorts) - Windows(MSYS2): Downloads binaries from here
- Debian/Ubuntu:
Configure the project
idf.py menuconfig
In addition to the common configurations for Ethernet examples from upper level, you might also need to update the default value of following configurations:
- In the
Example Configuration
menu:- Enable storing history commands in flash under
Store command history in flash
.
- Enable storing history commands in flash under
Build, Flash, and Run
Build the project and flash it to the board, then run monitor tool to view serial output:
idf.py -p PORT build flash monitor
(Replace PORT with the name of the serial port to use.)
(To exit the serial monitor, type Ctrl-]
.)
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
Example Output
Test uplink bandwidth
- PC: run command:
iperf -u -s -i 3
to start iperf server in UDP mode, and report interval is 3 seconds. - ESP32: run command:
iperf -u -c PC_IP -i 3 -t 30
to start iperf client in UDP mode, and the test will last 30 seconds.
PC output
------------------------------------------------------------
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 208 KByte (default)
------------------------------------------------------------
[ 3] local 192.168.2.160 port 5001 connected with 192.168.2.156 port 49154
[ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[ 3] 0.0- 3.0 sec 26.1 MBytes 72.8 Mbits/sec 0.198 ms 1/18585 (0.0054%)
[ 3] 3.0- 6.0 sec 26.3 MBytes 73.7 Mbits/sec 0.192 ms 0/18792 (0%)
[ 3] 6.0- 9.0 sec 26.3 MBytes 73.5 Mbits/sec 0.189 ms 0/18741 (0%)
[ 3] 9.0-12.0 sec 26.2 MBytes 73.3 Mbits/sec 0.191 ms 43/18739 (0.23%)
[ 3] 12.0-15.0 sec 26.3 MBytes 73.5 Mbits/sec 0.194 ms 0/18739 (0%)
[ 3] 15.0-18.0 sec 26.3 MBytes 73.5 Mbits/sec 0.191 ms 0/18741 (0%)
[ 3] 18.0-21.0 sec 26.3 MBytes 73.5 Mbits/sec 0.187 ms 0/18752 (0%)
[ 3] 21.0-24.0 sec 26.3 MBytes 73.4 Mbits/sec 0.192 ms 0/18737 (0%)
[ 3] 24.0-27.0 sec 26.3 MBytes 73.5 Mbits/sec 0.188 ms 0/18739 (0%)
ESP32 output
mode=udp-client sip=192.168.2.156:5001, dip=192.168.2.160:5001, interval=3, time=30
Interval Bandwidth
0- 3 sec 72.92 Mbits/sec
3- 6 sec 73.76 Mbits/sec
6- 9 sec 73.56 Mbits/sec
9- 12 sec 73.56 Mbits/sec
12- 15 sec 73.56 Mbits/sec
15- 18 sec 73.56 Mbits/sec
18- 21 sec 73.61 Mbits/sec
21- 24 sec 73.55 Mbits/sec
24- 27 sec 73.56 Mbits/sec
27- 30 sec 73.56 Mbits/sec
0- 30 sec 73.52 Mbits/sec
Test downlink bandwidth
- PC: run command:
iperf -u -c ESP_IP -b 80M -t 30 -i 3
to start iperf client in UDP mode with estimated bandwidth 100M, and report interval is 3 seconds. - ESP32: run command:
iperf -u -s -t 30 -i 3
to start iperf server in UDP mode, and the test will last 30 seconds.
PC output
------------------------------------------------------------
Client connecting to 192.168.2.156, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
------------------------------------------------------------
[ 3] local 192.168.2.160 port 59581 connected with 192.168.2.156 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0- 3.0 sec 28.6 MBytes 80.0 Mbits/sec
[ 3] 3.0- 6.0 sec 28.6 MBytes 80.0 Mbits/sec
[ 3] 6.0- 9.0 sec 28.6 MBytes 80.0 Mbits/sec
[ 3] 9.0-12.0 sec 28.6 MBytes 80.0 Mbits/sec
[ 3] 12.0-15.0 sec 28.4 MBytes 79.5 Mbits/sec
[ 3] 15.0-18.0 sec 28.6 MBytes 79.9 Mbits/sec
[ 3] 18.0-21.0 sec 28.6 MBytes 79.9 Mbits/sec
[ 3] 21.0-24.0 sec 28.6 MBytes 79.9 Mbits/sec
[ 3] 24.0-27.0 sec 28.6 MBytes 80.0 Mbits/sec
[ 3] 27.0-30.0 sec 28.5 MBytes 79.7 Mbits/sec
[ 3] 0.0-30.0 sec 286 MBytes 79.9 Mbits/sec
ESP32 output
mode=udp-server sip=192.168.2.156:5001, dip=0.0.0.0:5001, interval=3, time=30
Interval Bandwidth
I (2534456) iperf: want recv=16384
0- 3 sec 79.36 Mbits/sec
3- 6 sec 79.56 Mbits/sec
6- 9 sec 79.51 Mbits/sec
9- 12 sec 79.24 Mbits/sec
12- 15 sec 77.33 Mbits/sec
15- 18 sec 79.01 Mbits/sec
18- 21 sec 78.58 Mbits/sec
21- 24 sec 78.24 Mbits/sec
24- 27 sec 79.56 Mbits/sec
27- 30 sec 77.20 Mbits/sec
0- 30 sec 78.76 Mbits/sec
Suggestions of getting higher bandwidth
- Higher MCU working frequency will get higher bandwidth.
- Put frequency invoked function into IRAM via macro
IRAM_ATTR
in code. - Priority of iperf task may also have effect.
Troubleshooting
See common troubleshooting for Ethernet examples from upper level.
(For any technical queries, please open an issue on GitHub. We will get back to you as soon as possible.)