esp-idf/components/esp32/phy_init.c

666 wiersze
23 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <sys/lock.h>
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/rtc.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "esp_err.h"
#include "esp_phy_init.h"
#include "esp_system.h"
#include "esp_log.h"
#include "nvs.h"
#include "nvs_flash.h"
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "phy.h"
#include "phy_init_data.h"
#include "esp_coexist_internal.h"
#include "driver/periph_ctrl.h"
#include "esp_wifi_internal.h"
extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb;
static const char* TAG = "phy_init";
static _lock_t s_phy_rf_init_lock;
/* Bit mask of modules needing to call phy_rf_init */
static uint32_t s_module_phy_rf_init = 0;
/* Whether modem sleep is turned on */
static volatile bool s_is_phy_rf_en = false;
/* Bit mask of modules needing to enter modem sleep mode */
static uint32_t s_modem_sleep_module_enter = 0;
/* Bit mask of modules which might use RF, system can enter modem
* sleep mode only when all modules registered require to enter
* modem sleep*/
static uint32_t s_modem_sleep_module_register = 0;
/* Whether modern sleep is turned on */
static volatile bool s_is_modem_sleep_en = false;
static _lock_t s_modem_sleep_lock;
/* time stamp updated when the PHY/RF is turned on */
static int64_t s_phy_rf_en_ts = 0;
uint32_t IRAM_ATTR phy_enter_critical(void)
{
return portENTER_CRITICAL_NESTED();
}
void IRAM_ATTR phy_exit_critical(uint32_t level)
{
portEXIT_CRITICAL_NESTED(level);
}
int64_t esp_phy_rf_get_on_ts(void)
{
return s_phy_rf_en_ts;
}
static inline void phy_update_wifi_mac_time(bool en_clock_stopped, int64_t now)
{
static uint32_t s_common_clock_disable_time = 0;
if (en_clock_stopped) {
s_common_clock_disable_time = (uint32_t)now;
} else {
if (s_common_clock_disable_time) {
uint32_t diff = (uint64_t)now - s_common_clock_disable_time;
if (s_wifi_mac_time_update_cb) {
s_wifi_mac_time_update_cb(diff);
}
s_common_clock_disable_time = 0;
}
}
}
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode,
esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module)
{
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
if (module >= PHY_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, PHY_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
_lock_acquire(&s_phy_rf_init_lock);
uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init;
bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & (BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE)));
esp_err_t status = ESP_OK;
s_module_phy_rf_init |= BIT(module);
if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
status = ESP_FAIL;
}
else if (s_is_phy_rf_en == true) {
}
else {
/* If Wi-Fi, BT all disabled, modem sleep should not take effect;
* If either Wi-Fi or BT is enabled, should allow modem sleep requires
* to enter sleep;
* If Wi-Fi, BT co-exist, it is disallowed that only one module
* support modem sleep, E,g. BT support modem sleep but Wi-Fi not
* support modem sleep;
*/
if (is_wifi_or_bt_enabled == false){
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = true;
}
}
else {
if (module == PHY_MODEM_MODULE){
s_is_phy_rf_en = true;
}
else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
/* New module (BT or Wi-Fi) can init RF according to modem_sleep_exit */
}
}
if (s_is_phy_rf_en == true){
// Update time stamp
s_phy_rf_en_ts = esp_timer_get_time();
// Update WiFi MAC time before WiFi/BT common clock is enabled
phy_update_wifi_mac_time(false, s_phy_rf_en_ts);
// Enable WiFi/BT common peripheral clock
periph_module_enable(PERIPH_WIFI_BT_COMMON_MODULE);
phy_set_wifi_mode_only(0);
if (ESP_CAL_DATA_CHECK_FAIL == register_chipv7_phy(init_data, calibration_data, mode)) {
ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", mode);
#ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
if (mode != PHY_RF_CAL_FULL) {
esp_phy_store_cal_data_to_nvs(calibration_data);
}
#endif
}
coex_bt_high_prio();
}
}
#if CONFIG_SW_COEXIST_ENABLE
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
if ((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) { //both wifi & bt enabled
coex_init();
coex_preference_set(CONFIG_SW_COEXIST_PREFERENCE_VALUE);
coex_resume();
}
}
#endif
_lock_release(&s_phy_rf_init_lock);
return status;
}
esp_err_t esp_phy_rf_deinit(phy_rf_module_t module)
{
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
if (module >= PHY_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, PHY_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
_lock_acquire(&s_phy_rf_init_lock);
uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init;
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & phy_bt_wifi_mask);
bool is_both_wifi_bt_enabled = ((s_module_phy_rf_init_old & phy_bt_wifi_mask) == phy_bt_wifi_mask);
s_module_phy_rf_init &= ~BIT(module);
esp_err_t status = ESP_OK;
#if CONFIG_SW_COEXIST_ENABLE
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
if (is_both_wifi_bt_enabled == true) {
coex_deinit();
}
}
#endif
if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
/* Modem sleep should not take effect in this case */
status = ESP_FAIL;
}
else if (s_is_phy_rf_en == false) {
//do nothing
}
else {
if (is_wifi_or_bt_enabled == false){
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = false;
ESP_LOGE(TAG, "%s, RF should not be in enabled state if both Wi-Fi and BT are disabled", __func__);
}
}
else {
if (module == PHY_MODEM_MODULE){
s_is_phy_rf_en = false;
}
else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = is_both_wifi_bt_enabled ? true : false;
}
}
if (s_is_phy_rf_en == false) {
// Disable PHY and RF.
phy_close_rf();
// Update WiFi MAC time before disalbe WiFi/BT common peripheral clock
phy_update_wifi_mac_time(true, esp_timer_get_time());
// Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG
periph_module_disable(PERIPH_WIFI_BT_COMMON_MODULE);
}
}
_lock_release(&s_phy_rf_init_lock);
return status;
}
esp_err_t esp_modem_sleep_enter(modem_sleep_module_t module)
{
#if CONFIG_SW_COEXIST_ENABLE
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
#endif
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_ERR_INVALID_ARG;
}
else {
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter |= BIT(module);
#if CONFIG_SW_COEXIST_ENABLE
_lock_acquire(&s_phy_rf_init_lock);
if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled
&& (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) != 0){
coex_pause();
}
_lock_release(&s_phy_rf_init_lock);
#endif
if (!s_is_modem_sleep_en && (s_modem_sleep_module_enter == s_modem_sleep_module_register)){
esp_err_t status = esp_phy_rf_deinit(PHY_MODEM_MODULE);
if (status == ESP_OK){
s_is_modem_sleep_en = true;
}
}
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
esp_err_t esp_modem_sleep_exit(modem_sleep_module_t module)
{
#if CONFIG_SW_COEXIST_ENABLE
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
#endif
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_ERR_INVALID_ARG;
}
else {
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter &= ~BIT(module);
if (s_is_modem_sleep_en){
esp_err_t status = esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
if (status == ESP_OK){
s_is_modem_sleep_en = false;
}
}
#if CONFIG_SW_COEXIST_ENABLE
_lock_acquire(&s_phy_rf_init_lock);
if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled
&& (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) == 0){
coex_resume();
}
_lock_release(&s_phy_rf_init_lock);
#endif
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
return ESP_OK;
}
esp_err_t esp_modem_sleep_register(modem_sleep_module_t module)
{
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (s_modem_sleep_module_register & BIT(module)){
ESP_LOGI(TAG, "%s, multiple registration of module (%d)", __func__, module);
return ESP_OK;
}
else{
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_register |= BIT(module);
/* The module is set to enter modem sleep by default, otherwise will prevent
* other modules from entering sleep mode if this module never call enter sleep function
* in the future */
s_modem_sleep_module_enter |= BIT(module);
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
esp_err_t esp_modem_sleep_deregister(modem_sleep_module_t module)
{
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGI(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_OK;
}
else{
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter &= ~BIT(module);
s_modem_sleep_module_register &= ~BIT(module);
if (s_modem_sleep_module_register == 0){
s_modem_sleep_module_enter = 0;
/* Once all module are de-registered and current state
* is modem sleep mode, we need to turn off modem sleep
*/
if (s_is_modem_sleep_en == true){
s_is_modem_sleep_en = false;
esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
}
}
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
// PHY init data handling functions
#if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
#include "esp_partition.h"
const esp_phy_init_data_t* esp_phy_get_init_data()
{
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "PHY data partition not found");
return NULL;
}
ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address);
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data");
return NULL;
}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err);
return NULL;
}
if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
ESP_LOGE(TAG, "failed to validate PHY data partition");
return NULL;
}
ESP_LOGD(TAG, "PHY data partition validated");
return (const esp_phy_init_data_t*) (init_data_store + sizeof(phy_init_magic_pre));
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
free((uint8_t*) init_data - sizeof(phy_init_magic_pre));
}
#else // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data
const esp_phy_init_data_t* esp_phy_get_init_data()
{
ESP_LOGD(TAG, "loading PHY init data from application binary");
return &phy_init_data;
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
// no-op
}
#endif // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// PHY calibration data handling functions
static const char* PHY_NAMESPACE = "phy";
static const char* PHY_CAL_VERSION_KEY = "cal_version";
static const char* PHY_CAL_MAC_KEY = "cal_mac";
static const char* PHY_CAL_DATA_KEY = "cal_data";
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
esp_phy_calibration_data_t* out_cal_data);
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
const esp_phy_calibration_data_t* cal_data);
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data)
{
nvs_handle handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle);
if (err == ESP_ERR_NVS_NOT_INITIALIZED) {
ESP_LOGE(TAG, "%s: NVS has not been initialized. "
"Call nvs_flash_init before starting WiFi/BT.", __func__);
return err;
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}
err = load_cal_data_from_nvs_handle(handle, out_cal_data);
nvs_close(handle);
return err;
}
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data)
{
nvs_handle handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}
else {
err = store_cal_data_to_nvs_handle(handle, cal_data);
nvs_close(handle);
return err;
}
}
esp_err_t esp_phy_erase_cal_data_in_nvs(void)
{
nvs_handle handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to open NVS phy namespace (0x%x)", __func__, err);
return err;
}
else {
err = nvs_erase_all(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to erase NVS phy namespace (0x%x)", __func__, err);
}
else {
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to commit NVS phy namespace (0x%x)", __func__, err);
}
}
}
nvs_close(handle);
return err;
}
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
esp_phy_calibration_data_t* out_cal_data)
{
esp_err_t err;
uint32_t cal_data_version;
err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_version (0x%x)", __func__, err);
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
if (cal_data_version != cal_format_version) {
ESP_LOGD(TAG, "%s: expected calibration data format %d, found %d",
__func__, cal_format_version, cal_data_version);
return ESP_FAIL;
}
uint8_t cal_data_mac[6];
size_t length = sizeof(cal_data_mac);
err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_mac (0x%x)", __func__, err);
return err;
}
if (length != sizeof(cal_data_mac)) {
ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
uint8_t sta_mac[6];
esp_efuse_mac_get_default(sta_mac);
if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
MACSTR ", found " MACSTR,
__func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac));
return ESP_FAIL;
}
length = sizeof(*out_cal_data);
err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err);
return err;
}
if (length != sizeof(*out_cal_data)) {
ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
return ESP_OK;
}
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
const esp_phy_calibration_data_t* cal_data)
{
esp_err_t err;
err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)\n", __func__, err);
return err;
}
uint8_t sta_mac[6];
esp_efuse_mac_get_default(sta_mac);
err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration mac failed(0x%x)\n", __func__, err);
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration version failed(0x%x)\n", __func__, err);
return err;
}
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err);
}
return err;
}
#if CONFIG_REDUCE_PHY_TX_POWER
static void esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data)
{
uint8_t i;
for(i = 0; i < PHY_TX_POWER_NUM; i++) {
// LOWEST_PHY_TX_POWER is the lowest tx power
init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;
}
}
#endif
void esp_phy_load_cal_and_init(phy_rf_module_t module)
{
esp_phy_calibration_data_t* cal_data =
(esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1);
if (cal_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
abort();
}
#if CONFIG_REDUCE_PHY_TX_POWER
const esp_phy_init_data_t* phy_init_data = esp_phy_get_init_data();
if (phy_init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
esp_phy_init_data_t* init_data = (esp_phy_init_data_t*) malloc(sizeof(esp_phy_init_data_t));
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for phy init data");
abort();
}
memcpy(init_data, phy_init_data, sizeof(esp_phy_init_data_t));
if (esp_reset_reason() == ESP_RST_BROWNOUT) {
esp_phy_reduce_tx_power(init_data);
}
#else
const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
#endif
#ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL;
uint8_t sta_mac[6];
if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
calibration_mode = PHY_RF_CAL_NONE;
}
esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
if (err != ESP_OK) {
ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err);
calibration_mode = PHY_RF_CAL_FULL;
}
esp_efuse_mac_get_default(sta_mac);
memcpy(cal_data->mac, sta_mac, 6);
esp_phy_rf_init(init_data, calibration_mode, cal_data, module);
if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) {
err = esp_phy_store_cal_data_to_nvs(cal_data);
} else {
err = ESP_OK;
}
#else
esp_phy_rf_init(init_data, PHY_RF_CAL_FULL, cal_data, module);
#endif
#if CONFIG_REDUCE_PHY_TX_POWER
esp_phy_release_init_data(phy_init_data);
free(init_data);
#else
esp_phy_release_init_data(init_data);
#endif
free(cal_data); // PHY maintains a copy of calibration data, so we can free this
}