esp-idf/components/esp32/test/test_esp_timer.c

373 wiersze
12 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include "unity.h"
#include "../esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "test_utils.h"
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
{
void dummy_cb(void* arg)
{
}
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
size_t indices[] = { 3, 0, 4, 2, 5, 1 };
const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]);
esp_timer_handle_t handles[num_timers];
char* names[num_timers];
for (size_t i = 0; i < num_timers; ++i) {
asprintf(&names[i], "timer%d", i);
esp_timer_create_args_t args = {
.callback = &dummy_cb,
.name = names[i]
};
TEST_ESP_OK(esp_timer_create(&args, &handles[i]));
TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100));
}
char* stream_str[1024];
FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+");
TEST_ESP_OK(esp_timer_dump(stream));
for (size_t i = 0; i < num_timers; ++i) {
TEST_ESP_OK(esp_timer_stop(handles[i]));
TEST_ESP_OK(esp_timer_delete(handles[i]));
free(names[i]);
}
fflush(stream);
fseek(stream, 0, SEEK_SET);
for (size_t i = 0; i < num_timers; ++i) {
char line[128];
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
#if WITH_PROFILING
int timer_id;
sscanf(line, "timer%d", &timer_id);
TEST_ASSERT_EQUAL(indices[timer_id], i);
#else
intptr_t timer_ptr;
sscanf(line, "timer@0x%x", &timer_ptr);
for (size_t j = 0; j < num_timers; ++j) {
if (indices[j] == i) {
TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr);
break;
}
}
#endif
}
fclose(stream);
}
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
{
void timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get();
}
int64_t t_end;
esp_timer_handle_t timer1;
esp_timer_create_args_t args = {
.callback = &timer_func,
.arg = &t_end,
.name = "timer1"
};
TEST_ESP_OK(esp_timer_create(&args, &timer1));
const int delays_ms[] = {20, 100, 200, 250};
const size_t delays_count = sizeof(delays_ms)/sizeof(delays_ms[0]);
ref_clock_init();
for (size_t i = 0; i < delays_count; ++i) {
t_end = 0;
int64_t t_start = ref_clock_get();
TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000));
vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS);
TEST_ASSERT(t_end != 0);
int32_t ms_diff = (t_end - t_start) / 1000;
printf("%d %d\n", delays_ms[i], ms_diff);
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff);
}
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
esp_timer_delete(timer1);
}
TEST_CASE("periodic ets_timer produces correct delays", "[esp_timer]")
{
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
ets_delay_us(10*1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
}
}
const int delay_ms = 100;
test_args_t args = {0};
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args,
.name = "timer1"
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
ref_clock_init();
args.timer = timer1;
args.t_start = ref_clock_get();
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
vTaskDelay(delay_ms * (NUM_INTERVALS + 1));
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
}
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(timer1) );
#undef NUM_INTERVALS
}
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
{
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
esp_timer_handle_t timer;
test_common_t* common;
bool pass;
SemaphoreHandle_t done;
int64_t t_start;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
ms_since_start, count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000);
}
test_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0
};
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
ref_clock_init();
int64_t now = ref_clock_get();
test_args_t args1 = {
.timer_index = 1,
.intervals = {10, 40, 20, 40, 30},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_args_t args2 = {
.timer_index = 2,
.intervals = {20, 20, 60, 30, 40},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_args_t args3 = {
.timer_index = 3,
.intervals = {30, 30, 60, 30, 10},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args1,
.name = "1"
};
TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer));
create_args.name = "2";
create_args.arg = &args2;
TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer));
create_args.name = "3";
create_args.arg = &args3;
TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer));
esp_timer_start_once(args1.timer, args1.intervals[0] * 1000);
esp_timer_start_once(args2.timer, args2.intervals[0] * 1000);
esp_timer_start_once(args3.timer, args3.intervals[0] * 1000);
for (int i = 0; i < 3; ++i) {
int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS);
TEST_ASSERT_TRUE(result == pdPASS);
}
TEST_ASSERT_TRUE(args1.pass);
TEST_ASSERT_TRUE(args2.pass);
TEST_ASSERT_TRUE(args3.pass);
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(args1.timer) );
TEST_ESP_OK( esp_timer_delete(args2.timer) );
TEST_ESP_OK( esp_timer_delete(args3.timer) );
#undef N
}
/* Create two timers, start them around the same time, and search through
* timeout delta values to reproduce the case when timeouts occur close to
* each other, testing the "multiple timers triggered" code path in timer_process_alarm.
*/
TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
{
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
void timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.arg = (void*) semaphore,
.name = "foo"
};
esp_timer_handle_t timer1, timer2;
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer1) );
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer2) );
const int timeout_ms = 10;
for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) {
printf("delta=%d", timeout_delta_us);
ESP_ERROR_CHECK( esp_timer_start_once(timer1, timeout_ms * 1000) );
ESP_ERROR_CHECK( esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us) );
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
printf("\n");
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1));
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2));
}
vSemaphoreDelete(semaphore);
}
TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]")
{
int64_t begin = esp_timer_get_time();
volatile int64_t end;
const int iter_count = 10000;
for (int i = 0; i < iter_count; ++i) {
end = esp_timer_get_time();
}
int ns_per_call = (int) ((end - begin) * 1000 / iter_count);
printf("esp_timer_get_time: %dns per call\n", ns_per_call);
TEST_ASSERT(ns_per_call < 1000);
}
/* This test runs for about 10 minutes and is disabled in CI.
* Such run time is needed to have FRC2 timer overflow a few times.
*/
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer][ignore]")
{
void timer_test_task(void* arg) {
int64_t delta = esp_timer_get_time() - ref_clock_get();
const int iter_count = 1000000000;
for (int i = 0; i < iter_count; ++i) {
int64_t now = esp_timer_get_time();
int64_t ref_now = ref_clock_get();
int64_t diff = now - (ref_now + delta);
/* Allow some difference due to rtos tick interrupting task between
* getting 'now' and 'ref_now'.
*/
TEST_ASSERT_INT32_WITHIN(100, 0, (int) diff);
}
xSemaphoreGive((SemaphoreHandle_t) arg);
vTaskDelete(NULL);
}
ref_clock_init();
SemaphoreHandle_t done_1 = xSemaphoreCreateBinary();
SemaphoreHandle_t done_2 = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(&timer_test_task, "t1", 4096, (void*) done_1, 6, NULL, 0);
xTaskCreatePinnedToCore(&timer_test_task, "t2", 4096, (void*) done_2, 6, NULL, 1);
TEST_ASSERT_TRUE( xSemaphoreTake(done_1, portMAX_DELAY) );
TEST_ASSERT_TRUE( xSemaphoreTake(done_2, portMAX_DELAY) );
vSemaphoreDelete(done_1);
vSemaphoreDelete(done_2);
ref_clock_deinit();
}