esp-idf/tools/unit-test-app/components/test_utils/ccomp_timer_impl.c

227 wiersze
7.2 KiB
C

// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <string.h>
#include "ccomp_timer_impl.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_attr.h"
#include "eri.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "esp_freertos_hooks.h"
#include "perfmon.h"
#include "xtensa/core-macros.h"
#include "xtensa/xt_perf_consts.h"
#include "xtensa-debug-module.h"
#include "esp_ipc.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
#elif CONFIG_IDF_TARGET_ESP32S2BETA
#include "esp32s2beta/clk.h"
#endif
#define D_STALL_COUNTER_ID 0
#define I_STALL_COUNTER_ID 1
typedef enum
{
PERF_TIMER_UNINIT = 0, // timer has not been initialized yet
PERF_TIMER_IDLE, // timer has been initialized but is not tracking elapsed time
PERF_TIMER_ACTIVE // timer is tracking elapsed time
} ccomp_timer_state_t;
typedef struct
{
int i_ovfl; // number of times instruction stall counter has overflowed
int d_ovfl; // number of times data stall counter has overflowed
uint32_t last_ccount; // last CCOUNT value, updated every os tick
ccomp_timer_state_t state; // state of the timer
intr_handle_t intr_handle; // handle to allocated handler for perfmon counter overflows, so that it can be freed during deinit
int64_t ccount; // accumulated processors cycles during the time when timer is active
} ccomp_timer_status_t;
// Each core has its independent timer
ccomp_timer_status_t s_status[] = {
(ccomp_timer_status_t){
.i_ovfl = 0,
.d_ovfl = 0,
.ccount = 0,
.last_ccount = 0,
.state = PERF_TIMER_UNINIT,
.intr_handle = NULL,
},
(ccomp_timer_status_t){
.i_ovfl = 0,
.d_ovfl = 0,
.ccount = 0,
.last_ccount = 0,
.state = PERF_TIMER_UNINIT,
.intr_handle = NULL
}
};
static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
static void IRAM_ATTR update_ccount(void)
{
if (s_status[xPortGetCoreID()].state == PERF_TIMER_ACTIVE) {
int64_t new_ccount = xthal_get_ccount();
if (new_ccount > s_status[xPortGetCoreID()].last_ccount) {
s_status[xPortGetCoreID()].ccount += new_ccount - s_status[xPortGetCoreID()].last_ccount;
} else {
// CCOUNT has wrapped around
s_status[xPortGetCoreID()].ccount += new_ccount + (UINT32_MAX - s_status[xPortGetCoreID()].last_ccount);
}
s_status[xPortGetCoreID()].last_ccount = new_ccount;
}
}
static void inline update_overflow(int id, int *cnt)
{
uint32_t pmstat = eri_read(ERI_PERFMON_PMSTAT0 + id * sizeof(int32_t));
if (pmstat & PMSTAT_OVFL) {
*cnt += 1;
// Clear overflow and PerfMonInt asserted bits. The only valid bits in PMSTAT is the ones we're trying to clear. So it should be
// ok to just modify the whole register.
eri_write(ERI_PERFMON_PMSTAT0 + id, ~0x0);
}
}
static void IRAM_ATTR perf_counter_overflow_handler(void *args)
{
update_overflow(D_STALL_COUNTER_ID, &s_status[xPortGetCoreID()].d_ovfl);
update_overflow(I_STALL_COUNTER_ID, &s_status[xPortGetCoreID()].i_ovfl);
}
static void set_perfmon_interrupt(bool enable)
{
uint32_t d_pmctrl = eri_read(ERI_PERFMON_PMCTRL0 + D_STALL_COUNTER_ID * sizeof(int32_t));
uint32_t i_pmctrl = eri_read(ERI_PERFMON_PMCTRL0 + I_STALL_COUNTER_ID * sizeof(int32_t));
if (enable) {
d_pmctrl |= PMCTRL_INTEN;
i_pmctrl |= PMCTRL_INTEN;
}
else {
d_pmctrl &= ~PMCTRL_INTEN;
i_pmctrl &= ~PMCTRL_INTEN;
}
eri_write(ERI_PERFMON_PMCTRL0 + D_STALL_COUNTER_ID * sizeof(int32_t), d_pmctrl);
eri_write(ERI_PERFMON_PMCTRL0 + I_STALL_COUNTER_ID * sizeof(int32_t), i_pmctrl);
}
esp_err_t ccomp_timer_impl_init(void)
{
// Keep track of how many times each counter has overflowed.
esp_err_t err = esp_intr_alloc(ETS_INTERNAL_PROFILING_INTR_SOURCE, 0,
perf_counter_overflow_handler, NULL, &s_status[xPortGetCoreID()].intr_handle);
if (err != ESP_OK) {
return err;
}
xtensa_perfmon_init(D_STALL_COUNTER_ID,
XTPERF_CNT_D_STALL,
XTPERF_MASK_D_STALL_BUSY, 0, -1);
xtensa_perfmon_init(I_STALL_COUNTER_ID,
XTPERF_CNT_I_STALL,
XTPERF_MASK_I_STALL_BUSY, 0, -1);
set_perfmon_interrupt(true);
s_status[xPortGetCoreID()].state = PERF_TIMER_IDLE;
return ESP_OK;
}
esp_err_t ccomp_timer_impl_deinit(void)
{
set_perfmon_interrupt(false);
esp_err_t err = esp_intr_free(s_status[xPortGetCoreID()].intr_handle);
if (err != ESP_OK) {
return err;
}
s_status[xPortGetCoreID()].intr_handle = NULL;
s_status[xPortGetCoreID()].state = PERF_TIMER_UNINIT;
return ESP_OK;
}
esp_err_t ccomp_timer_impl_start(void)
{
s_status[xPortGetCoreID()].state = PERF_TIMER_ACTIVE;
s_status[xPortGetCoreID()].last_ccount = xthal_get_ccount();
// Update elapsed cycles every OS tick
esp_register_freertos_tick_hook_for_cpu(update_ccount, xPortGetCoreID());
xtensa_perfmon_start();
return ESP_OK;
}
esp_err_t IRAM_ATTR ccomp_timer_impl_stop(void)
{
xtensa_perfmon_stop();
esp_deregister_freertos_tick_hook_for_cpu(update_ccount, xPortGetCoreID());
update_ccount();
s_status[xPortGetCoreID()].state = PERF_TIMER_IDLE;
return ESP_OK;
}
int64_t IRAM_ATTR ccomp_timer_impl_get_time(void)
{
update_ccount();
int64_t d_stalls = xtensa_perfmon_value(D_STALL_COUNTER_ID) +
s_status[xPortGetCoreID()].d_ovfl * (1 << sizeof(int32_t));
int64_t i_stalls = xtensa_perfmon_value(I_STALL_COUNTER_ID) +
s_status[xPortGetCoreID()].i_ovfl * (1 << sizeof(int32_t));
int64_t stalls = d_stalls + i_stalls;
int64_t cycles = s_status[xPortGetCoreID()].ccount;
return ((cycles - stalls) * 1000000) / esp_clk_cpu_freq();
}
esp_err_t ccomp_timer_impl_reset(void)
{
xtensa_perfmon_reset(D_STALL_COUNTER_ID);
xtensa_perfmon_reset(I_STALL_COUNTER_ID);
s_status[xPortGetCoreID()].d_ovfl = 0;
s_status[xPortGetCoreID()].i_ovfl = 0;
s_status[xPortGetCoreID()].ccount = 0;
s_status[xPortGetCoreID()].last_ccount = 0;
return ESP_OK;
}
bool ccomp_timer_impl_is_init(void)
{
return s_status[xPortGetCoreID()].state != PERF_TIMER_UNINIT;
}
bool IRAM_ATTR ccomp_timer_impl_is_active(void)
{
return s_status[xPortGetCoreID()].state == PERF_TIMER_ACTIVE;
}
void IRAM_ATTR ccomp_timer_impl_lock(void)
{
portENTER_CRITICAL(&s_lock);
}
void IRAM_ATTR ccomp_timer_impl_unlock(void)
{
portEXIT_CRITICAL(&s_lock);
}