kopia lustrzana https://github.com/espressif/esp-idf
227 wiersze
7.2 KiB
C
227 wiersze
7.2 KiB
C
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "ccomp_timer_impl.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_attr.h"
|
|
#include "eri.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/portmacro.h"
|
|
#include "esp_freertos_hooks.h"
|
|
#include "perfmon.h"
|
|
#include "xtensa/core-macros.h"
|
|
#include "xtensa/xt_perf_consts.h"
|
|
#include "xtensa-debug-module.h"
|
|
#include "esp_ipc.h"
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
#include "esp32/clk.h"
|
|
#elif CONFIG_IDF_TARGET_ESP32S2BETA
|
|
#include "esp32s2beta/clk.h"
|
|
#endif
|
|
|
|
#define D_STALL_COUNTER_ID 0
|
|
#define I_STALL_COUNTER_ID 1
|
|
|
|
typedef enum
|
|
{
|
|
PERF_TIMER_UNINIT = 0, // timer has not been initialized yet
|
|
PERF_TIMER_IDLE, // timer has been initialized but is not tracking elapsed time
|
|
PERF_TIMER_ACTIVE // timer is tracking elapsed time
|
|
} ccomp_timer_state_t;
|
|
|
|
typedef struct
|
|
{
|
|
int i_ovfl; // number of times instruction stall counter has overflowed
|
|
int d_ovfl; // number of times data stall counter has overflowed
|
|
uint32_t last_ccount; // last CCOUNT value, updated every os tick
|
|
ccomp_timer_state_t state; // state of the timer
|
|
intr_handle_t intr_handle; // handle to allocated handler for perfmon counter overflows, so that it can be freed during deinit
|
|
int64_t ccount; // accumulated processors cycles during the time when timer is active
|
|
} ccomp_timer_status_t;
|
|
|
|
// Each core has its independent timer
|
|
ccomp_timer_status_t s_status[] = {
|
|
(ccomp_timer_status_t){
|
|
.i_ovfl = 0,
|
|
.d_ovfl = 0,
|
|
.ccount = 0,
|
|
.last_ccount = 0,
|
|
.state = PERF_TIMER_UNINIT,
|
|
.intr_handle = NULL,
|
|
},
|
|
(ccomp_timer_status_t){
|
|
.i_ovfl = 0,
|
|
.d_ovfl = 0,
|
|
.ccount = 0,
|
|
.last_ccount = 0,
|
|
.state = PERF_TIMER_UNINIT,
|
|
.intr_handle = NULL
|
|
}
|
|
};
|
|
|
|
static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
static void IRAM_ATTR update_ccount(void)
|
|
{
|
|
if (s_status[xPortGetCoreID()].state == PERF_TIMER_ACTIVE) {
|
|
int64_t new_ccount = xthal_get_ccount();
|
|
if (new_ccount > s_status[xPortGetCoreID()].last_ccount) {
|
|
s_status[xPortGetCoreID()].ccount += new_ccount - s_status[xPortGetCoreID()].last_ccount;
|
|
} else {
|
|
// CCOUNT has wrapped around
|
|
s_status[xPortGetCoreID()].ccount += new_ccount + (UINT32_MAX - s_status[xPortGetCoreID()].last_ccount);
|
|
}
|
|
s_status[xPortGetCoreID()].last_ccount = new_ccount;
|
|
}
|
|
}
|
|
|
|
static void inline update_overflow(int id, int *cnt)
|
|
{
|
|
uint32_t pmstat = eri_read(ERI_PERFMON_PMSTAT0 + id * sizeof(int32_t));
|
|
if (pmstat & PMSTAT_OVFL) {
|
|
*cnt += 1;
|
|
// Clear overflow and PerfMonInt asserted bits. The only valid bits in PMSTAT is the ones we're trying to clear. So it should be
|
|
// ok to just modify the whole register.
|
|
eri_write(ERI_PERFMON_PMSTAT0 + id, ~0x0);
|
|
}
|
|
}
|
|
|
|
static void IRAM_ATTR perf_counter_overflow_handler(void *args)
|
|
{
|
|
update_overflow(D_STALL_COUNTER_ID, &s_status[xPortGetCoreID()].d_ovfl);
|
|
update_overflow(I_STALL_COUNTER_ID, &s_status[xPortGetCoreID()].i_ovfl);
|
|
}
|
|
|
|
static void set_perfmon_interrupt(bool enable)
|
|
{
|
|
uint32_t d_pmctrl = eri_read(ERI_PERFMON_PMCTRL0 + D_STALL_COUNTER_ID * sizeof(int32_t));
|
|
uint32_t i_pmctrl = eri_read(ERI_PERFMON_PMCTRL0 + I_STALL_COUNTER_ID * sizeof(int32_t));
|
|
|
|
if (enable) {
|
|
d_pmctrl |= PMCTRL_INTEN;
|
|
i_pmctrl |= PMCTRL_INTEN;
|
|
}
|
|
else {
|
|
d_pmctrl &= ~PMCTRL_INTEN;
|
|
i_pmctrl &= ~PMCTRL_INTEN;
|
|
}
|
|
|
|
eri_write(ERI_PERFMON_PMCTRL0 + D_STALL_COUNTER_ID * sizeof(int32_t), d_pmctrl);
|
|
eri_write(ERI_PERFMON_PMCTRL0 + I_STALL_COUNTER_ID * sizeof(int32_t), i_pmctrl);
|
|
}
|
|
|
|
|
|
esp_err_t ccomp_timer_impl_init(void)
|
|
{
|
|
// Keep track of how many times each counter has overflowed.
|
|
esp_err_t err = esp_intr_alloc(ETS_INTERNAL_PROFILING_INTR_SOURCE, 0,
|
|
perf_counter_overflow_handler, NULL, &s_status[xPortGetCoreID()].intr_handle);
|
|
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
xtensa_perfmon_init(D_STALL_COUNTER_ID,
|
|
XTPERF_CNT_D_STALL,
|
|
XTPERF_MASK_D_STALL_BUSY, 0, -1);
|
|
xtensa_perfmon_init(I_STALL_COUNTER_ID,
|
|
XTPERF_CNT_I_STALL,
|
|
XTPERF_MASK_I_STALL_BUSY, 0, -1);
|
|
|
|
set_perfmon_interrupt(true);
|
|
s_status[xPortGetCoreID()].state = PERF_TIMER_IDLE;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ccomp_timer_impl_deinit(void)
|
|
{
|
|
set_perfmon_interrupt(false);
|
|
|
|
esp_err_t err = esp_intr_free(s_status[xPortGetCoreID()].intr_handle);
|
|
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
s_status[xPortGetCoreID()].intr_handle = NULL;
|
|
s_status[xPortGetCoreID()].state = PERF_TIMER_UNINIT;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t ccomp_timer_impl_start(void)
|
|
{
|
|
s_status[xPortGetCoreID()].state = PERF_TIMER_ACTIVE;
|
|
s_status[xPortGetCoreID()].last_ccount = xthal_get_ccount();
|
|
// Update elapsed cycles every OS tick
|
|
esp_register_freertos_tick_hook_for_cpu(update_ccount, xPortGetCoreID());
|
|
xtensa_perfmon_start();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR ccomp_timer_impl_stop(void)
|
|
{
|
|
xtensa_perfmon_stop();
|
|
esp_deregister_freertos_tick_hook_for_cpu(update_ccount, xPortGetCoreID());
|
|
update_ccount();
|
|
s_status[xPortGetCoreID()].state = PERF_TIMER_IDLE;
|
|
return ESP_OK;
|
|
}
|
|
|
|
int64_t IRAM_ATTR ccomp_timer_impl_get_time(void)
|
|
{
|
|
update_ccount();
|
|
int64_t d_stalls = xtensa_perfmon_value(D_STALL_COUNTER_ID) +
|
|
s_status[xPortGetCoreID()].d_ovfl * (1 << sizeof(int32_t));
|
|
int64_t i_stalls = xtensa_perfmon_value(I_STALL_COUNTER_ID) +
|
|
s_status[xPortGetCoreID()].i_ovfl * (1 << sizeof(int32_t));
|
|
int64_t stalls = d_stalls + i_stalls;
|
|
int64_t cycles = s_status[xPortGetCoreID()].ccount;
|
|
return ((cycles - stalls) * 1000000) / esp_clk_cpu_freq();
|
|
}
|
|
|
|
esp_err_t ccomp_timer_impl_reset(void)
|
|
{
|
|
xtensa_perfmon_reset(D_STALL_COUNTER_ID);
|
|
xtensa_perfmon_reset(I_STALL_COUNTER_ID);
|
|
s_status[xPortGetCoreID()].d_ovfl = 0;
|
|
s_status[xPortGetCoreID()].i_ovfl = 0;
|
|
s_status[xPortGetCoreID()].ccount = 0;
|
|
s_status[xPortGetCoreID()].last_ccount = 0;
|
|
return ESP_OK;
|
|
}
|
|
|
|
bool ccomp_timer_impl_is_init(void)
|
|
{
|
|
return s_status[xPortGetCoreID()].state != PERF_TIMER_UNINIT;
|
|
}
|
|
|
|
bool IRAM_ATTR ccomp_timer_impl_is_active(void)
|
|
{
|
|
return s_status[xPortGetCoreID()].state == PERF_TIMER_ACTIVE;
|
|
}
|
|
|
|
void IRAM_ATTR ccomp_timer_impl_lock(void)
|
|
{
|
|
portENTER_CRITICAL(&s_lock);
|
|
}
|
|
|
|
void IRAM_ATTR ccomp_timer_impl_unlock(void)
|
|
{
|
|
portEXIT_CRITICAL(&s_lock);
|
|
} |