kopia lustrzana https://github.com/espressif/esp-idf
1811 wiersze
75 KiB
Python
Executable File
1811 wiersze
75 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# NB: Before sending a PR to change the above line to '#!/usr/bin/env python2', please read https://github.com/themadinventor/esptool/issues/21
|
|
#
|
|
# ESP8266 ROM Bootloader Utility
|
|
# https://github.com/themadinventor/esptool
|
|
#
|
|
# Copyright (C) 2014-2016 Fredrik Ahlberg, Angus Gratton, other contributors as noted.
|
|
# ESP31/32 support Copyright (C) 2016 Angus Gratton, based in part on work Copyright
|
|
# (C) 2015-2016 Espressif Systems.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify it under
|
|
# the terms of the GNU General Public License as published by the Free Software
|
|
# Foundation; either version 2 of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but WITHOUT
|
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
|
|
# Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
import argparse
|
|
import hashlib
|
|
import inspect
|
|
import json
|
|
import os
|
|
import serial
|
|
import struct
|
|
import subprocess
|
|
import sys
|
|
import time
|
|
import zlib
|
|
|
|
__version__ = "2.0-dev"
|
|
|
|
|
|
MAX_UINT32 = 0xffffffff
|
|
MAX_UINT24 = 0xffffff
|
|
|
|
|
|
class ESPROM(object):
|
|
""" Base class providing access to ESP ROM bootloader. Subclasses provide
|
|
ESP8266, ESP31 & ESP32 specific functionality.
|
|
|
|
Don't instantiate this base class directly, either instantiate a subclass or
|
|
call ESPROM.detect_chip() which will interrogate the chip and return the
|
|
appropriate subclass instance.
|
|
|
|
"""
|
|
CHIP_NAME = "Espressif device"
|
|
|
|
DEFAULT_PORT = "/dev/ttyUSB0"
|
|
|
|
# These are the currently known commands supported by the ROM
|
|
ESP_FLASH_BEGIN = 0x02
|
|
ESP_FLASH_DATA = 0x03
|
|
ESP_FLASH_END = 0x04
|
|
ESP_MEM_BEGIN = 0x05
|
|
ESP_MEM_END = 0x06
|
|
ESP_MEM_DATA = 0x07
|
|
ESP_SYNC = 0x08
|
|
ESP_WRITE_REG = 0x09
|
|
ESP_READ_REG = 0x0a
|
|
|
|
# Maximum block sized for RAM and Flash writes, respectively.
|
|
ESP_RAM_BLOCK = 0x1800
|
|
ESP_FLASH_BLOCK = 0x400
|
|
|
|
# Default baudrate. The ROM auto-bauds, so we can use more or less whatever we want.
|
|
ESP_ROM_BAUD = 115200
|
|
|
|
# First byte of the application image
|
|
ESP_IMAGE_MAGIC = 0xe9
|
|
|
|
# Initial state for the checksum routine
|
|
ESP_CHECKSUM_MAGIC = 0xef
|
|
|
|
# Flash sector size, minimum unit of erase.
|
|
ESP_FLASH_SECTOR = 0x1000
|
|
|
|
UART_DATA_REG_ADDR = 0x60000078
|
|
|
|
# SPI peripheral "command" bitmasks
|
|
SPI_CMD_READ_ID = 0x10000000
|
|
|
|
# Memory addresses
|
|
IROM_MAP_START = 0x40200000
|
|
IROM_MAP_END = 0x40300000
|
|
|
|
# The number of bytes in the response that signify command status
|
|
STATUS_BYTES_LENGTH = 2
|
|
|
|
def __init__(self, port=DEFAULT_PORT, baud=ESP_ROM_BAUD, do_connect=True):
|
|
"""Base constructor for ESPROM objects
|
|
|
|
Don't call this constructor, either instantiate ESP8266ROM,
|
|
ESP31ROM, or ESP32ROM, or use ESPROM.detect_chip().
|
|
|
|
"""
|
|
self._port = serial.Serial(port)
|
|
self._slip_reader = slip_reader(self._port)
|
|
# setting baud rate in a separate step is a workaround for
|
|
# CH341 driver on some Linux versions (this opens at 9600 then
|
|
# sets), shouldn't matter for other platforms/drivers. See
|
|
# https://github.com/themadinventor/esptool/issues/44#issuecomment-107094446
|
|
self._port.baudrate = baud
|
|
if do_connect:
|
|
self.connect()
|
|
|
|
@staticmethod
|
|
def detect_chip(port=DEFAULT_PORT, baud=ESP_ROM_BAUD):
|
|
"""Use serial access to detect the chip type.
|
|
|
|
We use the UART's datecode register for this, it's mapped at
|
|
the same address on ESP8266 & ESP31/32 so we can use one
|
|
memory read and compare to the datecode register for each chip
|
|
type.
|
|
|
|
"""
|
|
detect_port = ESPROM(port, baud, True)
|
|
sys.stdout.write('Detecting chip type... ')
|
|
date_reg = detect_port.read_reg(ESPROM.UART_DATA_REG_ADDR)
|
|
for cls in [ESP8266ROM, ESP31ROM, ESP32ROM]:
|
|
if date_reg == cls.DATE_REG_VALUE:
|
|
inst = cls(port, baud, False) # don't connect a second time
|
|
print '%s' % inst.CHIP_NAME
|
|
return inst
|
|
print ''
|
|
raise FatalError("Unexpected UART datecode value 0x%08x. Failed to autodetect chip type." % date_reg)
|
|
|
|
""" Read a SLIP packet from the serial port """
|
|
def read(self):
|
|
return self._slip_reader.next()
|
|
|
|
""" Write bytes to the serial port while performing SLIP escaping """
|
|
def write(self, packet):
|
|
buf = '\xc0' \
|
|
+ (packet.replace('\xdb','\xdb\xdd').replace('\xc0','\xdb\xdc')) \
|
|
+ '\xc0'
|
|
self._port.write(buf)
|
|
|
|
""" Calculate checksum of a blob, as it is defined by the ROM """
|
|
@staticmethod
|
|
def checksum(data, state=ESP_CHECKSUM_MAGIC):
|
|
for b in data:
|
|
state ^= ord(b)
|
|
return state
|
|
|
|
""" Send a request and read the response """
|
|
def command(self, op=None, data=None, chk=0):
|
|
if op is not None:
|
|
pkt = struct.pack('<BBHI', 0x00, op, len(data), chk) + data
|
|
self.write(pkt)
|
|
|
|
# tries to get a response until that response has the
|
|
# same operation as the request or a retries limit has
|
|
# exceeded. This is needed for some esp8266s that
|
|
# reply with more sync responses than expected.
|
|
for retry in xrange(100):
|
|
p = self.read()
|
|
if len(p) < 8:
|
|
continue
|
|
(resp, op_ret, len_ret, val) = struct.unpack('<BBHI', p[:8])
|
|
if resp != 1:
|
|
continue
|
|
data = p[8:]
|
|
if op is None or op_ret == op:
|
|
return val, data
|
|
|
|
raise FatalError("Response doesn't match request")
|
|
|
|
def check_command(self, op_description, op=None, data=None, chk=0):
|
|
"""
|
|
Execute a command with 'command', check the result code and throw an appropriate
|
|
FatalError if it fails.
|
|
|
|
Returns the "result" of a successful command.
|
|
"""
|
|
val, data = self.command(op, data, chk)
|
|
|
|
# things are a bit weird here, bear with us
|
|
|
|
# the status bytes are the last 2/4 bytes in the data (depending on chip)
|
|
if len(data) < self.STATUS_BYTES_LENGTH:
|
|
raise FatalError("Failed to %s. Only got %d byte status response." % op_description, len(data))
|
|
status_bytes = data[-self.STATUS_BYTES_LENGTH:]
|
|
# we only care if the first one is non-zero. If it is, the second byte is a reason.
|
|
if status_bytes[0] != '\0':
|
|
raise FatalError.WithResult('Failed to %s' % op_description, status_bytes)
|
|
|
|
# if we had more data than just the status bytes, return it as the result
|
|
# (this is used by the md5sum command, maybe other commands?)
|
|
if len(data) > self.STATUS_BYTES_LENGTH:
|
|
return data[:-self.STATUS_BYTES_LENGTH]
|
|
else: # otherwise, just return the 'val' field which comes from the reply header (this is used by read_reg)
|
|
return val
|
|
|
|
def flush_input(self):
|
|
self._port.flushInput()
|
|
self._slip_reader = slip_reader(self._port)
|
|
|
|
def sync(self):
|
|
""" Perform a connection test """
|
|
self.command(ESPROM.ESP_SYNC, '\x07\x07\x12\x20' + 32 * '\x55')
|
|
for i in xrange(7):
|
|
self.command()
|
|
|
|
def connect(self):
|
|
""" Try connecting repeatedly until successful, or giving up """
|
|
print 'Connecting...'
|
|
|
|
for _ in xrange(4):
|
|
# issue reset-to-bootloader:
|
|
# RTS = either CH_PD or nRESET (both active low = chip in reset)
|
|
# DTR = GPIO0 (active low = boot to flasher)
|
|
self._port.setDTR(False)
|
|
self._port.setRTS(True)
|
|
time.sleep(0.05)
|
|
self._port.setDTR(True)
|
|
self._port.setRTS(False)
|
|
time.sleep(0.05)
|
|
self._port.setDTR(False)
|
|
|
|
# worst-case latency timer should be 255ms (probably <20ms)
|
|
self._port.timeout = 0.3
|
|
last_exception = None
|
|
for _ in xrange(4):
|
|
try:
|
|
self.flush_input()
|
|
self._port.flushOutput()
|
|
self.sync()
|
|
self._port.timeout = 5
|
|
return
|
|
except FatalError as e:
|
|
last_exception = e
|
|
time.sleep(0.05)
|
|
raise FatalError('Failed to connect to %s: %s' % (self.CHIP_NAME, last_exception))
|
|
|
|
""" Read memory address in target """
|
|
def read_reg(self, addr):
|
|
# we don't call check_command here because read_reg() function is called
|
|
# when detecting chip type, and the way we check for success (STATUS_BYTES_LENGTH) is different
|
|
# for different chip types (!)
|
|
val, data = self.command(ESPROM.ESP_READ_REG, struct.pack('<I', addr))
|
|
if data[0] != '\0':
|
|
raise FatalError.WithResult("Failed to read register address %08x" % addr, data)
|
|
return val
|
|
|
|
""" Write to memory address in target """
|
|
def write_reg(self, addr, value, mask, delay_us=0):
|
|
return self.check_command("write target memory", ESPROM.ESP_WRITE_REG,
|
|
struct.pack('<IIII', addr, value, mask, delay_us))
|
|
|
|
""" Start downloading an application image to RAM """
|
|
def mem_begin(self, size, blocks, blocksize, offset):
|
|
return self.check_command("enter RAM download mode", ESPROM.ESP_MEM_BEGIN,
|
|
struct.pack('<IIII', size, blocks, blocksize, offset))
|
|
|
|
""" Send a block of an image to RAM """
|
|
def mem_block(self, data, seq):
|
|
return self.check_command("write to target RAM", ESPROM.ESP_MEM_DATA,
|
|
struct.pack('<IIII', len(data), seq, 0, 0) + data,
|
|
ESPROM.checksum(data))
|
|
|
|
""" Leave download mode and run the application """
|
|
def mem_finish(self, entrypoint=0):
|
|
return self.check_command("leave RAM download mode", ESPROM.ESP_MEM_END,
|
|
struct.pack('<II', int(entrypoint == 0), entrypoint))
|
|
|
|
""" Start downloading to Flash (performs an erase) """
|
|
def flash_begin(self, size, offset):
|
|
old_tmo = self._port.timeout
|
|
num_blocks = (size + ESPROM.ESP_FLASH_BLOCK - 1) / ESPROM.ESP_FLASH_BLOCK
|
|
erase_size = self.get_erase_size(size)
|
|
|
|
self._port.timeout = 20
|
|
t = time.time()
|
|
self.check_command("enter Flash download mode", ESPROM.ESP_FLASH_BEGIN,
|
|
struct.pack('<IIII', erase_size, num_blocks, ESPROM.ESP_FLASH_BLOCK, offset))
|
|
if size != 0:
|
|
print "Took %.2fs to erase flash block" % (time.time() - t)
|
|
self._port.timeout = old_tmo
|
|
|
|
""" Write block to flash """
|
|
def flash_block(self, data, seq):
|
|
self.check_command("write to target Flash after seq %d" % seq,
|
|
ESPROM.ESP_FLASH_DATA,
|
|
struct.pack('<IIII', len(data), seq, 0, 0) + data,
|
|
ESPROM.checksum(data))
|
|
|
|
""" Leave flash mode and run/reboot """
|
|
def flash_finish(self, reboot=False):
|
|
pkt = struct.pack('<I', int(not reboot))
|
|
self.check_command("leave Flash mode", ESPROM.ESP_FLASH_END, pkt)
|
|
|
|
""" Run application code in flash """
|
|
def run(self, reboot=False):
|
|
# Fake flash begin immediately followed by flash end
|
|
self.flash_begin(0, 0)
|
|
self.flash_finish(reboot)
|
|
|
|
""" Read SPI flash manufacturer and device id """
|
|
def flash_id(self):
|
|
self.flash_begin(0, 0)
|
|
self.write_reg(self.SPI_W0_REG_ADDR, 0x0, MAX_UINT32)
|
|
self.write_reg(self.SPI_CMD_REG_ADDR, self.SPI_CMD_READ_ID, MAX_UINT32)
|
|
flash_id = self.read_reg(self.SPI_W0_REG_ADDR)
|
|
self.flash_finish(False)
|
|
return flash_id
|
|
|
|
def parse_flash_size_arg(self, arg):
|
|
try:
|
|
return self.FLASH_SIZES[arg]
|
|
except KeyError:
|
|
raise FatalError("Flash size '%s' is not supported by this chip type. Supported sizes: %s"
|
|
% (arg, ", ".join(self.FLASH_SIZES.keys())))
|
|
|
|
""" Abuse the loader protocol to force flash to be left in write mode """
|
|
def flash_unlock_dio(self):
|
|
# Enable flash write mode
|
|
self.flash_begin(0, 0)
|
|
# Reset the chip rather than call flash_finish(), which would have
|
|
# write protected the chip again (why oh why does it do that?!)
|
|
self.mem_begin(0,0,0,0x40100000)
|
|
self.mem_finish(0x40000080)
|
|
|
|
def run_stub(self, stub, params, read_output=False):
|
|
stub = dict(stub)
|
|
stub['code'] = unhexify(stub['code'])
|
|
if 'data' in stub:
|
|
stub['data'] = unhexify(stub['data'])
|
|
|
|
if stub['num_params'] != len(params):
|
|
raise FatalError('Stub requires %d params, %d provided'
|
|
% (stub['num_params'], len(params)))
|
|
|
|
params = struct.pack('<' + ('I' * stub['num_params']), *params)
|
|
pc = params + stub['code']
|
|
|
|
# Upload
|
|
self.mem_begin(len(pc), 1, len(pc), stub['params_start'])
|
|
self.mem_block(pc, 0)
|
|
if 'data' in stub:
|
|
self.mem_begin(len(stub['data']), 1, len(stub['data']), stub['data_start'])
|
|
self.mem_block(stub['data'], 0)
|
|
self.mem_finish(stub['entry'])
|
|
|
|
if read_output:
|
|
print 'Stub executed, reading response:'
|
|
while True:
|
|
p = self.read()
|
|
print hexify(p)
|
|
if p == '':
|
|
return
|
|
|
|
|
|
class ESP8266ROM(ESPROM):
|
|
""" Access class for ESP8266 ROM bootloader
|
|
"""
|
|
CHIP_NAME = "ESP8266EX"
|
|
|
|
DATE_REG_VALUE = 0x00062000
|
|
|
|
# OTP ROM addresses
|
|
ESP_OTP_MAC0 = 0x3ff00050
|
|
ESP_OTP_MAC1 = 0x3ff00054
|
|
ESP_OTP_MAC3 = 0x3ff0005c
|
|
|
|
SPI_CMD_REG_ADDR = 0x60000200
|
|
SPI_W0_REG_ADDR = 0x60000240
|
|
|
|
FLASH_SIZES = {
|
|
'512KB':0x00,
|
|
'256KB':0x10,
|
|
'1MB':0x20,
|
|
'2MB':0x30,
|
|
'4MB':0x40,
|
|
'2MB-c1': 0x50,
|
|
'4MB-c1':0x60,
|
|
'4MB-c2':0x70}
|
|
|
|
def change_baud(self, baud):
|
|
pass # no change baud command on ESP8266 ROM
|
|
|
|
def chip_id(self):
|
|
""" Read Chip ID from OTP ROM - see http://esp8266-re.foogod.com/wiki/System_get_chip_id_%28IoT_RTOS_SDK_0.9.9%29 """
|
|
id0 = self.read_reg(self.ESP_OTP_MAC0)
|
|
id1 = self.read_reg(self.ESP_OTP_MAC1)
|
|
return (id0 >> 24) | ((id1 & MAX_UINT24) << 8)
|
|
|
|
def read_mac(self):
|
|
""" Read MAC from OTP ROM """
|
|
mac0 = self.read_reg(self.ESP_OTP_MAC0)
|
|
mac1 = self.read_reg(self.ESP_OTP_MAC1)
|
|
mac3 = self.read_reg(self.ESP_OTP_MAC3)
|
|
if (mac3 != 0):
|
|
oui = ((mac3 >> 16) & 0xff, (mac3 >> 8) & 0xff, mac3 & 0xff)
|
|
elif ((mac1 >> 16) & 0xff) == 0:
|
|
oui = (0x18, 0xfe, 0x34)
|
|
elif ((mac1 >> 16) & 0xff) == 1:
|
|
oui = (0xac, 0xd0, 0x74)
|
|
else:
|
|
raise FatalError("Unknown OUI")
|
|
return oui + ((mac1 >> 8) & 0xff, mac1 & 0xff, (mac0 >> 24) & 0xff)
|
|
|
|
def get_erase_size(self, size):
|
|
""" Calculate an erase size given a specific size in bytes.
|
|
|
|
Provides a workaround for the bootloader erase bug."""
|
|
|
|
sectors_per_block = 16
|
|
sector_size = self.ESP_FLASH_SECTOR
|
|
num_sectors = (size + sector_size - 1) / sector_size
|
|
start_sector = offset / sector_size
|
|
|
|
head_sectors = sectors_per_block - (start_sector % sectors_per_block)
|
|
if num_sectors < head_sectors:
|
|
head_sectors = num_sectors
|
|
|
|
if num_sectors < 2 * head_sectors:
|
|
return (num_sectors + 1) / 2 * sector_size
|
|
else:
|
|
return (num_sectors - head_sectors) * sector_size
|
|
|
|
class ESP31ROM(ESPROM):
|
|
""" Access class for ESP31 ROM bootloader
|
|
"""
|
|
CHIP_NAME = "ESP31"
|
|
|
|
DATE_REG_VALUE = 0x15052100
|
|
|
|
SPI_CMD_REG_ADDR = 0x60003000
|
|
SPI_W0_REG_ADDR = 0x60003040
|
|
|
|
EFUSE_BASE = 0x6001a000
|
|
|
|
FLASH_SIZES = {
|
|
'1MB':0x00,
|
|
'2MB':0x10,
|
|
'4MB':0x20,
|
|
'8MB':0x30,
|
|
'16MB':0x40
|
|
}
|
|
|
|
def read_efuse(self, n):
|
|
""" Read the nth word of the ESP3x EFUSE region. """
|
|
return self.read_reg(self.EFUSE_BASE + (4 * n))
|
|
|
|
def chip_id(self):
|
|
word16 = self.read_efuse(16)
|
|
word17 = self.read_efuse(17)
|
|
return ((word17 & MAX_UINT24) << 24) | (word16 >> 8) & MAX_UINT24
|
|
|
|
def read_mac(self):
|
|
""" Read MAC from EFUSE region """
|
|
word16 = self.read_efuse(16)
|
|
word17 = self.read_efuse(17)
|
|
word18 = self.read_efuse(18)
|
|
word19 = self.read_efuse(19)
|
|
wifi_mac = (((word17 >> 16) & 0xff), ((word17 >> 8) & 0xff), ((word17 >> 0) & 0xff),
|
|
((word16 >> 24) & 0xff), ((word16 >> 16) & 0xff), ((word16 >> 8) & 0xff))
|
|
bt_mac = (((word19 >> 16) & 0xff), ((word19 >> 8) & 0xff), ((word19 >> 0) & 0xff),
|
|
((word18 >> 24) & 0xff), ((word18 >> 16) & 0xff), ((word18 >> 8) & 0xff))
|
|
return (wifi_mac,bt_mac)
|
|
|
|
def get_erase_size(self, size):
|
|
return size
|
|
|
|
class ESP32ROM(ESP31ROM):
|
|
"""Access class for ESP32 ROM bootloader
|
|
|
|
"""
|
|
CHIP_NAME = "ESP32"
|
|
|
|
DATE_REG_VALUE = 0x15122500
|
|
|
|
# ESP32-only commands
|
|
ESP_SPI_FLASH_SET = 0xb
|
|
|
|
ESP_SPI_ATTACH_REQ = 0xD
|
|
|
|
ESP_CHANGE_BAUDRATE = 0x0F
|
|
ESP_FLASH_DEFL_BEGIN = 0x10
|
|
ESP_FLASH_DEFL_DATA = 0x11
|
|
ESP_FLASH_DEFL_END = 0x12
|
|
|
|
ESP_SPI_FLASH_MD5 = 0x13
|
|
|
|
IROM_MAP_START = 0x400d0000
|
|
IROM_MAP_END = 0x40400000
|
|
DROM_MAP_START = 0x3F400000
|
|
DROM_MAP_END = 0x3F700000
|
|
|
|
# ESP32 uses a 4 byte status reply
|
|
STATUS_BYTES_LENGTH = 4
|
|
|
|
def flash_defl_begin(self, size, compsize, offset):
|
|
""" Start downloading compressed data to Flash (performs an erase) """
|
|
old_tmo = self._port.timeout
|
|
num_blocks = (compsize + self.ESP_FLASH_BLOCK - 1) / self.ESP_FLASH_BLOCK
|
|
erase_blocks = (size + self.ESP_FLASH_BLOCK - 1) / self.ESP_FLASH_BLOCK
|
|
|
|
erase_size = size
|
|
if erase_size > 0 and (offset + erase_size) >= (16 / 8) * 1024 * 1024:
|
|
self.flash_spi_param_set()
|
|
|
|
self._port.timeout = 20
|
|
t = time.time()
|
|
print "Unc size %d comp size %d comp blocks %d" % (size, compsize, num_blocks)
|
|
self.check_command("enter compressed flash mode", self.ESP_FLASH_DEFL_BEGIN,
|
|
struct.pack('<IIII', erase_blocks * self.ESP_FLASH_BLOCK, num_blocks, self.ESP_FLASH_BLOCK, offset))
|
|
if size != 0:
|
|
print "Took %.2fs to erase flash block" % (time.time() - t)
|
|
self._port.timeout = old_tmo
|
|
|
|
""" Write block to flash, send compressed """
|
|
def flash_defl_block(self, data, seq):
|
|
self.check_command("write compressed data to flash after seq %d" % seq,
|
|
self.ESP_FLASH_DEFL_DATA, struct.pack('<IIII', len(data), seq, 0, 0) + data, ESPROM.checksum(data))
|
|
|
|
""" Leave compressed flash mode and run/reboot """
|
|
def flash_defl_finish(self, reboot=False):
|
|
pkt = struct.pack('<I', int(not reboot))
|
|
self.check_command("leave compressed flash mode", self.ESP_FLASH_DEFL_END, pkt)
|
|
self.in_bootloader = False
|
|
|
|
def flash_md5sum(self, addr, size):
|
|
# the MD5 command is special (
|
|
return self.check_command('calculate md5sum', self.ESP_SPI_FLASH_MD5, struct.pack('<IIII', addr, size, 0, 0))
|
|
|
|
def change_baud(self, baud):
|
|
print "Changing baud rate to %d" % baud
|
|
self.command(self.ESP_CHANGE_BAUDRATE, struct.pack('<II', baud, 0))
|
|
print "Changed."
|
|
self._port.baudrate = baud
|
|
time.sleep(0.05) # get rid of crap sent during baud rate change
|
|
self.flush_input()
|
|
|
|
def flash_spi_attach_req(self,ucIsHspi,ucIsLegacy):
|
|
"""Send SPI attach command
|
|
|
|
Internal Espressif function. Deprecate?
|
|
"""
|
|
print "SEND ESP SPI ATTACH CMD"
|
|
# last 3 bytes in ESP_SPI_ATTACH_REQ argument are reserved values
|
|
arg = struct.pack('<IBBBB', ucIsHspi, ucIsLegacy, 0, 0, 0)
|
|
self.check_command("configure SPI Flash attachment", ESP32ROM.ESP_SPI_ATTACH_REQ,
|
|
arg)
|
|
|
|
def flash_spi_param_set(self):
|
|
"""Set the flash params for ESP booter
|
|
|
|
I think this means writing a "flash_chip" type structure to RAM, so the ESP32 knows we have a larger flash size.
|
|
"""
|
|
# FOR ESP32, SET FLASH INFO FOR ROM CODE, DEFAULT IS 16Mbits, WE NEED TO RE-SET IT TO A BIGGER SIZE.
|
|
print("SET FLASH PARAMS")
|
|
fl_id = 0
|
|
total_size = (128 / 8) * 1024 * 1024
|
|
block_size = 64 * 1024
|
|
sector_size = 4 * 1024
|
|
page_size = 256
|
|
status_mask = 0xffff
|
|
|
|
err = self.command(ESP32ROM.ESP_SPI_FLASH_SET,
|
|
struct.pack('<IIIIII', fl_id, total_size, block_size, sector_size, page_size, status_mask))[1]
|
|
if err: # Should be checking one part of this tuple or the other, I think
|
|
raise FatalError.WithResult('Failed to config flash', err)
|
|
|
|
|
|
class ESPBOOTLOADER(object):
|
|
""" These are constants related to software ESP bootloader, working with 'v2' image files """
|
|
|
|
# First byte of the "v2" application image
|
|
IMAGE_V2_MAGIC = 0xea
|
|
|
|
# First 'segment' value in a "v2" application image, appears to be a constant version value?
|
|
IMAGE_V2_SEGMENT = 4
|
|
|
|
|
|
def LoadFirmwareImage(chip, filename):
|
|
""" Load a firmware image. Can be for ESP8266 or ESP32. ESP8266 images will be examined to determine if they are
|
|
original ROM firmware images (ESPFirmwareImage) or "v2" OTA bootloader images.
|
|
|
|
Returns a BaseFirmwareImage subclass, either ESPFirmwareImage (v1) or OTAFirmwareImage (v2).
|
|
"""
|
|
with open(filename, 'rb') as f:
|
|
if chip == 'esp32':
|
|
return ESP32FirmwareImage(f)
|
|
else: # Otherwise, ESP8266 so look at magic to determine the image type
|
|
magic = ord(f.read(1))
|
|
f.seek(0)
|
|
if magic == ESPROM.ESP_IMAGE_MAGIC:
|
|
return ESPFirmwareImage(f)
|
|
elif magic == ESPBOOTLOADER.IMAGE_V2_MAGIC:
|
|
return OTAFirmwareImage(f)
|
|
else:
|
|
raise FatalError("Invalid image magic number: %d" % magic)
|
|
|
|
|
|
class ImageSegment(object):
|
|
""" Wrapper class for a segment in an ESP image
|
|
(very similar to a section in an ELFImage also) """
|
|
def __init__(self, addr, data, file_offs=None):
|
|
self.addr = addr
|
|
# pad all ImageSegments to at least 4 bytes length
|
|
pad_mod = len(data) % 4
|
|
if pad_mod != 0:
|
|
data += "\x00" * (4 - pad_mod)
|
|
self.data = data
|
|
self.file_offs = file_offs
|
|
|
|
def copy_with_new_addr(self, new_addr):
|
|
""" Return a new ImageSegment with same data, but mapped at
|
|
a new address. """
|
|
return ImageSegment(new_addr, self.data, 0)
|
|
|
|
def __repr__(self):
|
|
r = "len 0x%05x load 0x%08x" % (len(self.data), self.addr)
|
|
if self.file_offs is not None:
|
|
r += " file_offs 0x%08x" % (self.file_offs)
|
|
return r
|
|
|
|
class ELFSection(ImageSegment):
|
|
""" Wrapper class for a section in an ELF image, has a section
|
|
name as well as the common properties of an ImageSegment. """
|
|
def __init__(self, name, addr, data):
|
|
super(ELFSection, self).__init__(addr, data)
|
|
self.name = name
|
|
|
|
def __repr__(self):
|
|
return "%s %s" % (self.name, super(ELFSection, self).__repr__())
|
|
|
|
|
|
class BaseFirmwareImage(object):
|
|
SEG_HEADER_LEN = 8
|
|
|
|
""" Base class with common firmware image functions """
|
|
def __init__(self):
|
|
self.segments = []
|
|
self.entrypoint = 0
|
|
|
|
def load_common_header(self, load_file, expected_magic):
|
|
(magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack('<BBBBI', load_file.read(8))
|
|
|
|
if magic != expected_magic or segments > 16:
|
|
raise FatalError('Invalid firmware image magic=%d segments=%d' % (magic, segments))
|
|
return segments
|
|
|
|
def load_segment(self, f, is_irom_segment=False):
|
|
""" Load the next segment from the image file """
|
|
file_offs = f.tell()
|
|
(offset, size) = struct.unpack('<II', f.read(8))
|
|
if not is_irom_segment:
|
|
if offset > 0x40200000 or offset < 0x3ffe0000 or size > 65536:
|
|
print('WARNING: Suspicious segment 0x%x, length %d' % (offset, size))
|
|
segment_data = f.read(size)
|
|
if len(segment_data) < size:
|
|
raise FatalError('End of file reading segment 0x%x, length %d (actual length %d)' % (offset, size, len(segment_data)))
|
|
segment = ImageSegment(offset, segment_data, file_offs)
|
|
self.segments.append(segment)
|
|
return segment
|
|
|
|
def save_segment(self, f, segment, checksum=None):
|
|
""" Save the next segment to the image file, return next checksum value if provided """
|
|
f.write(struct.pack('<II', segment.addr, len(segment.data)))
|
|
f.write(segment.data)
|
|
if checksum is not None:
|
|
return ESPROM.checksum(segment.data, checksum)
|
|
|
|
def read_checksum(self, f):
|
|
""" Return ESPROM checksum from end of just-read image """
|
|
# Skip the padding. The checksum is stored in the last byte so that the
|
|
# file is a multiple of 16 bytes.
|
|
align_file_position(f, 16)
|
|
return ord(f.read(1))
|
|
|
|
def append_checksum(self, f, checksum):
|
|
""" Append ESPROM checksum to the just-written image """
|
|
align_file_position(f, 16)
|
|
f.write(struct.pack('B', checksum))
|
|
|
|
def write_common_header(self, f, segments):
|
|
f.write(struct.pack('<BBBBI', ESPROM.ESP_IMAGE_MAGIC, len(segments),
|
|
self.flash_mode, self.flash_size_freq, self.entrypoint))
|
|
|
|
def is_irom_addr(self, addr):
|
|
""" Returns True if an address starts in the irom region.
|
|
Valid for ESP8266 only.
|
|
"""
|
|
return ESPROM.IROM_MAP_START <= addr < ESPROM.IROM_MAP_END
|
|
|
|
def get_irom_segment(self):
|
|
irom_segments = [s for s in self.segments if self.is_irom_addr(s.addr)]
|
|
if len(irom_segments) > 0:
|
|
if len(irom_segments) != 1:
|
|
raise FatalError('Found %d segments that could be irom0. Bad ELF file?' % len(irom_segments))
|
|
return irom_segments[0]
|
|
return None
|
|
|
|
def get_non_irom_segments(self):
|
|
irom_segment = self.get_irom_segment()
|
|
return [s for s in self.segments if s != irom_segment]
|
|
|
|
|
|
class ESPFirmwareImage(BaseFirmwareImage):
|
|
""" 'Version 1' firmware image, segments loaded directly by the ROM bootloader. """
|
|
def __init__(self, load_file=None):
|
|
super(ESPFirmwareImage, self).__init__()
|
|
self.flash_mode = 0
|
|
self.flash_size_freq = 0
|
|
self.version = 1
|
|
|
|
if load_file is not None:
|
|
segments = self.load_common_header(load_file, ESPROM.ESP_IMAGE_MAGIC)
|
|
|
|
for _ in xrange(segments):
|
|
self.load_segment(load_file)
|
|
self.checksum = self.read_checksum(load_file)
|
|
|
|
def default_output_name(self, input_file):
|
|
""" Derive a default output name from the ELF name. """
|
|
return input_file + '-'
|
|
|
|
def save(self, basename):
|
|
""" Save a set of V1 images for flashing. Parameter is a base filename. """
|
|
# IROM data goes in its own plain binary file
|
|
irom_segment = self.get_irom_segment()
|
|
if irom_segment is not None:
|
|
with open("%s0x%05x.bin" % (basename, irom_segment.addr), "wb") as f:
|
|
f.write(irom_segment.data)
|
|
|
|
# everything but IROM goes at 0x00000 in an image file
|
|
normal_segments = self.get_non_irom_segments()
|
|
with open("%s0x00000.bin" % basename, 'wb') as f:
|
|
self.write_common_header(f, normal_segments)
|
|
checksum = ESPROM.ESP_CHECKSUM_MAGIC
|
|
for segment in self.segments:
|
|
checksum = self.save_segment(f, segment, checksum)
|
|
self.append_checksum(f, checksum)
|
|
|
|
|
|
class OTAFirmwareImage(BaseFirmwareImage):
|
|
""" 'Version 2' firmware image, segments loaded by software bootloader stub
|
|
(ie Espressif bootloader or rboot)
|
|
"""
|
|
def __init__(self, load_file=None):
|
|
super(OTAFirmwareImage, self).__init__()
|
|
self.version = 2
|
|
if load_file is not None:
|
|
segments = self.load_common_header(load_file, ESPBOOTLOADER.IMAGE_V2_MAGIC)
|
|
if segments != ESPBOOTLOADER.IMAGE_V2_SEGMENT:
|
|
# segment count is not really segment count here, but we expect to see '4'
|
|
print 'Warning: V2 header has unexpected "segment" count %d (usually 4)' % segments
|
|
|
|
# irom segment comes before the second header
|
|
#
|
|
# the file is saved in the image with a zero load address
|
|
# in the header, so we need to calculate a load address
|
|
irom_offs = load_file.tell()
|
|
irom_segment = self.load_segment(load_file, True)
|
|
irom_segment.addr = irom_offs + ESPROM.IROM_MAP_START
|
|
|
|
first_flash_mode = self.flash_mode
|
|
first_flash_size_freq = self.flash_size_freq
|
|
first_entrypoint = self.entrypoint
|
|
# load the second header
|
|
self.load_common_header(load_file, ESPROM.ESP_IMAGE_MAGIC)
|
|
(magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack('<BBBBI', load_file.read(8))
|
|
|
|
if first_flash_mode != self.flash_mode:
|
|
print('WARNING: Flash mode value in first header (0x%02x) disagrees with second (0x%02x). Using second value.'
|
|
% (first_flash_mode, self.flash_mode))
|
|
if first_flash_size_freq != self.flash_size_freq:
|
|
print('WARNING: Flash size/freq value in first header (0x%02x) disagrees with second (0x%02x). Using second value.'
|
|
% (first_flash_size_freq, self.flash_size_freq))
|
|
if first_entrypoint != self.entrypoint:
|
|
print('WARNING: Entrypoint address in first header (0x%08x) disagrees with second header (0x%08x). Using second value.'
|
|
% (first_entrypoint, self.entrypoint))
|
|
|
|
# load all the usual segments
|
|
for _ in xrange(segments):
|
|
self.load_segment(load_file)
|
|
self.checksum = self.read_checksum(load_file)
|
|
|
|
def default_output_name(self, input_file):
|
|
""" Derive a default output name from the ELF name. """
|
|
irom_segment = self.get_irom_segment()
|
|
if irom_segment is not None:
|
|
irom_offs = irom_segment.addr - ESPROM.IROM_MAP_START
|
|
else:
|
|
irom_offs = 0
|
|
return "%s-0x%05x.bin" % (os.path.splitext(input_file)[0],
|
|
irom_offs & ~(ESPROM.ESP_FLASH_SECTOR - 1))
|
|
|
|
def save(self, filename):
|
|
with open(filename, 'wb') as f:
|
|
# Save first header for irom0 segment
|
|
f.write(struct.pack('<BBBBI', ESPBOOTLOADER.IMAGE_V2_MAGIC, ESPBOOTLOADER.IMAGE_V2_SEGMENT,
|
|
self.flash_mode, self.flash_size_freq, self.entrypoint))
|
|
|
|
irom_segment = self.get_irom_segment()
|
|
if irom_segment is not None:
|
|
# save irom0 segment, make sure it has load addr 0 in the file
|
|
irom_segment = irom_segment.copy_with_new_addr(0)
|
|
self.save_segment(f, irom_segment)
|
|
|
|
# second header, matches V1 header and contains loadable segments
|
|
normal_segments = self.get_non_irom_segments()
|
|
self.write_common_header(f, normal_segments)
|
|
checksum = ESPROM.ESP_CHECKSUM_MAGIC
|
|
for segment in normal_segments:
|
|
checksum = self.save_segment(f, segment, checksum)
|
|
self.append_checksum(f, checksum)
|
|
|
|
|
|
class ESP32FirmwareImage(BaseFirmwareImage):
|
|
""" ESP32 firmware image is very similar to V1 ESP8266 image,
|
|
except with an additional 16 byte reserved header at top of image,
|
|
and because of new flash mapping capabilities the flash-mapped regions
|
|
can be placed in the normal image (just @ 64kB padded offsets).
|
|
"""
|
|
def __init__(self, load_file=None):
|
|
super(ESP32FirmwareImage, self).__init__()
|
|
self.flash_mode = 0
|
|
self.flash_size_freq = 0
|
|
self.version = 1
|
|
self.additional_header = '\x00' * 16
|
|
|
|
if load_file is not None:
|
|
segments = self.load_common_header(load_file, ESPROM.ESP_IMAGE_MAGIC)
|
|
self.additional_header = load_file.read(16)
|
|
|
|
for i in xrange(segments):
|
|
self.load_segment(load_file)
|
|
self.checksum = self.read_checksum(load_file)
|
|
|
|
def is_flash_addr(self, addr):
|
|
return (ESP32ROM.IROM_MAP_START <= addr < ESP32ROM.IROM_MAP_END) \
|
|
or (ESP32ROM.DROM_MAP_START <= addr < ESP32ROM.DROM_MAP_END)
|
|
|
|
def default_output_name(self, input_file):
|
|
""" Derive a default output name from the ELF name. """
|
|
return "%s.bin" % (os.path.splitext(input_file)[0])
|
|
|
|
def save(self, filename):
|
|
padding_segments = 0
|
|
with open(filename, 'wb') as f:
|
|
self.write_common_header(f, self.segments)
|
|
f.write(self.additional_header)
|
|
|
|
checksum = ESPROM.ESP_CHECKSUM_MAGIC
|
|
last_addr = None
|
|
for segment in sorted(self.segments, key=lambda s:s.addr):
|
|
#print("Writing %s file @ 0x%x" % (segment, f.tell()))
|
|
|
|
# IROM/DROM segment flash mappings need to align on
|
|
# 64kB boundaries.
|
|
#
|
|
# TODO: intelligently order segments to reduce wastage
|
|
# by squeezing smaller DRAM/IRAM segments into the
|
|
# 64kB padding space.
|
|
IROM_ALIGN = 65536
|
|
|
|
# check for multiple ELF sections that live in the same flash mapping region.
|
|
# this is usually a sign of a broken linker script, but if you have a legitimate
|
|
# use case then let us know (we can merge segments here, but as a rule you probably
|
|
# want to merge them in your linker script.)
|
|
if last_addr is not None and self.is_flash_addr(last_addr) \
|
|
and self.is_flash_addr(segment.addr) and segment.addr // IROM_ALIGN == last_addr // IROM_ALIGN:
|
|
raise FatalError(("Segment loaded at 0x%08x lands in same 64KB flash mapping as segment loaded at 0x%08x. "+
|
|
"Can't generate binary. Suggest changing linker script or ELF to merge sections.") %
|
|
(segment.addr, last_addr))
|
|
last_addr = segment.addr
|
|
|
|
if self.is_flash_addr(segment.addr):
|
|
#print("Padding from offset %08x" % f.tell())
|
|
# Actual alignment required for the segment header: positioned so that
|
|
# after we write the next 8 byte header, file_offs % IROM_ALIGN == segment.addr % IROM_ALIGN
|
|
#
|
|
# (this is because the segment's vaddr may not be IROM_ALIGNed, more likely is aligned
|
|
# IROM_ALIGN+0x10 to account for longest possible header.
|
|
align_past = (segment.addr % IROM_ALIGN) - self.SEG_HEADER_LEN
|
|
#print "segment starts 0x%x so aligning header at +0x%x" % (segment.addr, align_past)
|
|
assert (align_past + self.SEG_HEADER_LEN) == (segment.addr % IROM_ALIGN)
|
|
|
|
# subtract SEG_HEADER_LEN a second time, as the padding block has a header as well
|
|
pad_len = ( IROM_ALIGN - (f.tell() % IROM_ALIGN) ) + align_past - self.SEG_HEADER_LEN
|
|
if pad_len < 0:
|
|
pad_len += IROM_ALIGN
|
|
if pad_len > 0:
|
|
#print("Calculated pad length %08x to place next header @ %08x" % (pad_len, f.tell()+pad_len))
|
|
null = ImageSegment(0, '\x00' * pad_len, f.tell())
|
|
checksum = self.save_segment(f, null, checksum)
|
|
#print("After padding, at file offset %08x" % f.tell())
|
|
padding_segments += 1
|
|
#print "Comparing file offs %x (data @ %x) with segment load addr %x" % (f.tell(), f.tell() + 8, segment.addr)
|
|
# verify that after the 8 byte header is added, were are at the correct offset relative to the segment's vaddr
|
|
assert (f.tell() + 8) % IROM_ALIGN == segment.addr % IROM_ALIGN
|
|
checksum = self.save_segment(f, segment, checksum)
|
|
self.append_checksum(f, checksum)
|
|
# kinda hacky: go back to the initial header and write the new segment count
|
|
# that includes padding segments. Luckily(?) this header is not checksummed
|
|
f.seek(1)
|
|
f.write(chr(len(self.segments) + padding_segments))
|
|
|
|
|
|
class ELFFile(object):
|
|
SEC_TYPE_PROGBITS = 0x01
|
|
SEC_TYPE_STRTAB = 0x03
|
|
|
|
def __init__(self, name):
|
|
# Load sections from the ELF file
|
|
self.name = name
|
|
with open(self.name, 'rb') as f:
|
|
self._read_elf_file(f)
|
|
|
|
def _read_elf_file(self, f):
|
|
# read the ELF file header
|
|
LEN_FILE_HEADER = 0x34
|
|
try:
|
|
(ident,_type,machine,_version,
|
|
self.entrypoint,_phoff,shoff,_flags,
|
|
_ehsize, _phentsize,_phnum,_shentsize,
|
|
_shnum,shstrndx) = struct.unpack("<16sHHLLLLLHHHHHH", f.read(LEN_FILE_HEADER))
|
|
except struct.error as e:
|
|
raise FatalError("Failed to read a valid ELF header from %s: %s" % (self.name, e))
|
|
|
|
if ident[0] != '\x7f' or ident[1:4] != 'ELF':
|
|
raise FatalError("%s has invalid ELF magic header" % self.name)
|
|
if machine != 0x5e:
|
|
raise FatalError("%s does not appear to be an Xtensa ELF file. e_machine=%04x" % (self.name, machine))
|
|
self._read_sections(f, shoff, shstrndx)
|
|
|
|
def _read_sections(self, f, section_header_offs, shstrndx):
|
|
f.seek(section_header_offs)
|
|
section_header = f.read()
|
|
LEN_SEC_HEADER = 0x28
|
|
if len(section_header) == 0:
|
|
raise FatalError("No section header found at offset %04x in ELF file." % section_header_offs)
|
|
if len(section_header) % LEN_SEC_HEADER != 0:
|
|
print 'WARNING: Unexpected ELF section header length %04x is not mod-%02x' % (len(section_header),LEN_SEC_HEADER)
|
|
|
|
# walk through the section header and extract all sections
|
|
section_header_offsets = range(0, len(section_header), LEN_SEC_HEADER)
|
|
|
|
def read_section_header(offs):
|
|
name_offs,sec_type,_flags,lma,sec_offs,size = struct.unpack_from("<LLLLLL", section_header[offs:])
|
|
return (name_offs, sec_type, lma, size, sec_offs)
|
|
all_sections = [read_section_header(offs) for offs in section_header_offsets]
|
|
prog_sections = [s for s in all_sections if s[1] == ELFFile.SEC_TYPE_PROGBITS]
|
|
|
|
# search for the string table section
|
|
if not shstrndx * LEN_SEC_HEADER in section_header_offsets:
|
|
raise FatalError("ELF file has no STRTAB section at shstrndx %d" % shstrndx)
|
|
_,sec_type,_,sec_size,sec_offs = read_section_header(shstrndx * LEN_SEC_HEADER)
|
|
if sec_type != ELFFile.SEC_TYPE_STRTAB:
|
|
print 'WARNING: ELF file has incorrect STRTAB section type 0x%02x' % sec_type
|
|
f.seek(sec_offs)
|
|
string_table = f.read(sec_size)
|
|
|
|
# build the real list of ELFSections by reading the actual section names from the
|
|
# string table section, and actual data for each section from the ELF file itself
|
|
def lookup_string(offs):
|
|
raw = string_table[offs:]
|
|
return raw[:raw.index('\x00')]
|
|
|
|
def read_data(offs,size):
|
|
f.seek(offs)
|
|
return f.read(size)
|
|
|
|
prog_sections = [ELFSection(lookup_string(n_offs), lma, read_data(offs, size)) for (n_offs, _type, lma, size, offs) in prog_sections
|
|
if lma != 0]
|
|
self.sections = prog_sections
|
|
|
|
|
|
class CesantaFlasher(object):
|
|
|
|
# From stub_flasher.h
|
|
CMD_FLASH_WRITE = 1
|
|
CMD_FLASH_READ = 2
|
|
CMD_FLASH_DIGEST = 3
|
|
CMD_FLASH_ERASE_CHIP = 5
|
|
CMD_BOOT_FW = 6
|
|
|
|
def __init__(self, esp, baud_rate=0):
|
|
print 'Running Cesanta flasher stub...'
|
|
if baud_rate <= ESPROM.ESP_ROM_BAUD: # don't change baud rates if we already synced at that rate
|
|
baud_rate = 0
|
|
self._esp = esp
|
|
esp.run_stub(json.loads(_CESANTA_FLASHER_STUB), [baud_rate])
|
|
if baud_rate > 0:
|
|
esp._port.baudrate = baud_rate
|
|
# Read the greeting.
|
|
p = esp.read()
|
|
if p != 'OHAI':
|
|
raise FatalError('Failed to connect to the flasher (got %s)' % hexify(p))
|
|
|
|
def flash_write(self, addr, data, show_progress=False):
|
|
assert addr % self._esp.ESP_FLASH_SECTOR == 0, 'Address must be sector-aligned'
|
|
assert len(data) % self._esp.ESP_FLASH_SECTOR == 0, 'Length must be sector-aligned'
|
|
sys.stdout.write('Writing %d @ 0x%x... ' % (len(data), addr))
|
|
sys.stdout.flush()
|
|
self._esp.write(struct.pack('<B', self.CMD_FLASH_WRITE))
|
|
self._esp.write(struct.pack('<III', addr, len(data), 1))
|
|
num_sent, num_written = 0, 0
|
|
while num_written < len(data):
|
|
p = self._esp.read()
|
|
if len(p) == 4:
|
|
num_written = struct.unpack('<I', p)[0]
|
|
elif len(p) == 1:
|
|
status_code = struct.unpack('<B', p)[0]
|
|
raise FatalError('Write failure, status: %x' % status_code)
|
|
else:
|
|
raise FatalError('Unexpected packet while writing: %s' % hexify(p))
|
|
if show_progress:
|
|
progress = '%d (%d %%)' % (num_written, num_written * 100.0 / len(data))
|
|
sys.stdout.write(progress + '\b' * len(progress))
|
|
sys.stdout.flush()
|
|
while num_sent - num_written < 5120:
|
|
self._esp._port.write(data[num_sent:num_sent + 1024])
|
|
num_sent += 1024
|
|
p = self._esp.read()
|
|
if len(p) != 16:
|
|
raise FatalError('Expected digest, got: %s' % hexify(p))
|
|
digest = hexify(p).upper()
|
|
expected_digest = hashlib.md5(data).hexdigest().upper()
|
|
print
|
|
if digest != expected_digest:
|
|
raise FatalError('Digest mismatch: expected %s, got %s' % (expected_digest, digest))
|
|
p = self._esp.read()
|
|
if len(p) != 1:
|
|
raise FatalError('Expected status, got: %s' % hexify(p))
|
|
status_code = struct.unpack('<B', p)[0]
|
|
if status_code != 0:
|
|
raise FatalError('Write failure, status: %x' % status_code)
|
|
|
|
def flash_read(self, addr, length, show_progress=False):
|
|
sys.stdout.write('Reading %d @ 0x%x... ' % (length, addr))
|
|
sys.stdout.flush()
|
|
self._esp.write(struct.pack('<B', self.CMD_FLASH_READ))
|
|
# USB may not be able to keep up with the read rate, especially at
|
|
# higher speeds. Since we don't have flow control, this will result in
|
|
# data loss. Hence, we use small packet size and only allow small
|
|
# number of bytes in flight, which we can reasonably expect to fit in
|
|
# the on-chip FIFO. max_in_flight = 64 works for CH340G, other chips may
|
|
# have longer FIFOs and could benefit from increasing max_in_flight.
|
|
self._esp.write(struct.pack('<IIII', addr, length, 32, 64))
|
|
data = ''
|
|
while True:
|
|
p = self._esp.read()
|
|
data += p
|
|
self._esp.write(struct.pack('<I', len(data)))
|
|
if show_progress and (len(data) % 1024 == 0 or len(data) == length):
|
|
progress = '%d (%d %%)' % (len(data), len(data) * 100.0 / length)
|
|
sys.stdout.write(progress + '\b' * len(progress))
|
|
sys.stdout.flush()
|
|
if len(data) == length:
|
|
break
|
|
if len(data) > length:
|
|
raise FatalError('Read more than expected')
|
|
p = self._esp.read()
|
|
if len(p) != 16:
|
|
raise FatalError('Expected digest, got: %s' % hexify(p))
|
|
expected_digest = hexify(p).upper()
|
|
digest = hashlib.md5(data).hexdigest().upper()
|
|
print
|
|
if digest != expected_digest:
|
|
raise FatalError('Digest mismatch: expected %s, got %s' % (expected_digest, digest))
|
|
p = self._esp.read()
|
|
if len(p) != 1:
|
|
raise FatalError('Expected status, got: %s' % hexify(p))
|
|
status_code = struct.unpack('<B', p)[0]
|
|
if status_code != 0:
|
|
raise FatalError('Write failure, status: %x' % status_code)
|
|
return data
|
|
|
|
def flash_digest(self, addr, length, digest_block_size=0):
|
|
self._esp.write(struct.pack('<B', self.CMD_FLASH_DIGEST))
|
|
self._esp.write(struct.pack('<III', addr, length, digest_block_size))
|
|
digests = []
|
|
while True:
|
|
p = self._esp.read()
|
|
if len(p) == 16:
|
|
digests.append(p)
|
|
elif len(p) == 1:
|
|
status_code = struct.unpack('<B', p)[0]
|
|
if status_code != 0:
|
|
raise FatalError('Write failure, status: %x' % status_code)
|
|
break
|
|
else:
|
|
raise FatalError('Unexpected packet: %s' % hexify(p))
|
|
return digests[-1], digests[:-1]
|
|
|
|
def boot_fw(self):
|
|
self._esp.write(struct.pack('<B', self.CMD_BOOT_FW))
|
|
p = self._esp.read()
|
|
if len(p) != 1:
|
|
raise FatalError('Expected status, got: %s' % hexify(p))
|
|
status_code = struct.unpack('<B', p)[0]
|
|
if status_code != 0:
|
|
raise FatalError('Boot failure, status: %x' % status_code)
|
|
|
|
def flash_erase(self):
|
|
self._esp.write(struct.pack('<B', self.CMD_FLASH_ERASE_CHIP))
|
|
p = self._esp.read()
|
|
if len(p) != 1:
|
|
raise FatalError('Expected status, got: %s' % hexify(p))
|
|
status_code = struct.unpack('<B', p)[0]
|
|
if status_code != 0:
|
|
raise FatalError('Chip erase failure, status: %x' % status_code)
|
|
|
|
|
|
def slip_reader(port):
|
|
"""Generator to read SLIP packets from a serial port.
|
|
Yields one full SLIP packet at a time, raises exception on timeout or invalid data.
|
|
|
|
Designed to avoid too many calls to serial.read(1), which can bog
|
|
down on slow systems.
|
|
"""
|
|
partial_packet = None
|
|
in_escape = False
|
|
while True:
|
|
waiting = port.inWaiting()
|
|
read_bytes = port.read(1 if waiting == 0 else waiting)
|
|
if read_bytes == '':
|
|
raise FatalError("Timed out waiting for packet %s" % ("header" if partial_packet is None else "content"))
|
|
|
|
for b in read_bytes:
|
|
if partial_packet is None: # waiting for packet header
|
|
if b == '\xc0':
|
|
partial_packet = ""
|
|
else:
|
|
raise FatalError('Invalid head of packet (%r)' % b)
|
|
elif in_escape: # part-way through escape sequence
|
|
in_escape = False
|
|
if b == '\xdc':
|
|
partial_packet += '\xc0'
|
|
elif b == '\xdd':
|
|
partial_packet += '\xdb'
|
|
else:
|
|
raise FatalError('Invalid SLIP escape (%r%r)' % ('\xdb', b))
|
|
elif b == '\xdb': # start of escape sequence
|
|
in_escape = True
|
|
elif b == '\xc0': # end of packet
|
|
yield partial_packet
|
|
partial_packet = None
|
|
else: # normal byte in packet
|
|
partial_packet += b
|
|
|
|
|
|
def arg_auto_int(x):
|
|
return int(x, 0)
|
|
|
|
|
|
def div_roundup(a, b):
|
|
""" Return a/b rounded up to nearest integer,
|
|
equivalent result to int(math.ceil(float(int(a)) / float(int(b))), only
|
|
without possible floating point accuracy errors.
|
|
"""
|
|
return (int(a) + int(b) - 1) / int(b)
|
|
|
|
|
|
def binutils_safe_path(p):
|
|
"""Returns a 'safe' version of path 'p' to pass to binutils
|
|
|
|
Only does anything under Cygwin Python, where cygwin paths need to
|
|
be translated to Windows paths if the binutils wasn't compiled
|
|
using Cygwin (should also work with binutils compiled using
|
|
Cygwin, see #73.)
|
|
"""
|
|
if sys.platform == "cygwin":
|
|
try:
|
|
return subprocess.check_output(["cygpath", "-w", p]).rstrip('\n')
|
|
except subprocess.CalledProcessError:
|
|
print "WARNING: Failed to call cygpath to sanitise Cygwin path."
|
|
return p
|
|
|
|
|
|
def align_file_position(f, size):
|
|
""" Align the position in the file to the next block of specified size """
|
|
align = (size - 1) - (f.tell() % size)
|
|
f.seek(align, 1)
|
|
|
|
|
|
def hexify(s):
|
|
return ''.join('%02X' % ord(c) for c in s)
|
|
|
|
|
|
def unhexify(hs):
|
|
s = ''
|
|
for i in range(0, len(hs) - 1, 2):
|
|
s += chr(int(hs[i] + hs[i + 1], 16))
|
|
return s
|
|
|
|
|
|
class FatalError(RuntimeError):
|
|
"""
|
|
Wrapper class for runtime errors that aren't caused by internal bugs, but by
|
|
ESP8266 responses or input content.
|
|
"""
|
|
def __init__(self, message):
|
|
RuntimeError.__init__(self, message)
|
|
|
|
@staticmethod
|
|
def WithResult(message, result):
|
|
"""
|
|
Return a fatal error object that appends the hex values of
|
|
'result' as a string formatted argument.
|
|
"""
|
|
message += " (result was %s)" % ", ".join(hex(ord(x)) for x in result)
|
|
return FatalError(message)
|
|
|
|
|
|
# "Operation" commands, executable at command line. One function each
|
|
#
|
|
# Each function takes either two args (<ESPROM instance>, <args>) or a single <args>
|
|
# argument.
|
|
|
|
def load_ram(esp, args):
|
|
image = LoadFirmwareImage(esp, args.filename)
|
|
|
|
print 'RAM boot...'
|
|
for (offset, size, data) in image.segments:
|
|
print 'Downloading %d bytes at %08x...' % (size, offset),
|
|
sys.stdout.flush()
|
|
esp.mem_begin(size, div_roundup(size, esp.ESP_RAM_BLOCK), esp.ESP_RAM_BLOCK, offset)
|
|
|
|
seq = 0
|
|
while len(data) > 0:
|
|
esp.mem_block(data[0:esp.ESP_RAM_BLOCK], seq)
|
|
data = data[esp.ESP_RAM_BLOCK:]
|
|
seq += 1
|
|
print 'done!'
|
|
|
|
print 'All segments done, executing at %08x' % image.entrypoint
|
|
esp.mem_finish(image.entrypoint)
|
|
|
|
|
|
def read_mem(esp, args):
|
|
print '0x%08x = 0x%08x' % (args.address, esp.read_reg(args.address))
|
|
|
|
|
|
def write_mem(esp, args):
|
|
esp.write_reg(args.address, args.value, args.mask, 0)
|
|
print 'Wrote %08x, mask %08x to %08x' % (args.value, args.mask, args.address)
|
|
|
|
|
|
def dump_mem(esp, args):
|
|
f = file(args.filename, 'wb')
|
|
for i in xrange(args.size / 4):
|
|
d = esp.read_reg(args.address + (i * 4))
|
|
f.write(struct.pack('<I', d))
|
|
if f.tell() % 1024 == 0:
|
|
print '\r%d bytes read... (%d %%)' % (f.tell(),
|
|
f.tell() * 100 / args.size),
|
|
sys.stdout.flush()
|
|
print 'Done!'
|
|
|
|
|
|
def write_flash(esp, args):
|
|
# This splitting of functionality will go away eventually,
|
|
# but for now this is the easiest way :|
|
|
if isinstance(esp, ESP32ROM):
|
|
write_flash_no_stub(esp, args)
|
|
else:
|
|
write_flash_via_stub(esp, args)
|
|
|
|
|
|
def write_flash_via_stub(esp, args):
|
|
flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
|
|
flash_size_freq = esp.parse_flash_size_arg(args.flash_size)
|
|
flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
|
|
flash_params = struct.pack('BB', flash_mode, flash_size_freq)
|
|
|
|
flasher = CesantaFlasher(esp, args.baud)
|
|
|
|
for address, argfile in args.addr_filename:
|
|
image = argfile.read()
|
|
argfile.seek(0) # rewind in case we need it again
|
|
# Fix sflash config data.
|
|
if address == 0 and image[0] == '\xe9':
|
|
print 'Flash params set to 0x%02x%02x' % (flash_mode, flash_size_freq)
|
|
image = image[0:2] + flash_params + image[4:]
|
|
# Pad to sector size, which is the minimum unit of writing (erasing really).
|
|
if len(image) % esp.ESP_FLASH_SECTOR != 0:
|
|
image += '\xff' * (esp.ESP_FLASH_SECTOR - (len(image) % esp.ESP_FLASH_SECTOR))
|
|
t = time.time()
|
|
flasher.flash_write(address, image, not args.no_progress)
|
|
t = time.time() - t
|
|
print ('\rWrote %d bytes at 0x%x in %.1f seconds (%.1f kbit/s)...'
|
|
% (len(image), address, t, len(image) / t * 8 / 1000))
|
|
print 'Leaving...'
|
|
if args.verify:
|
|
print 'Verifying just-written flash...'
|
|
_verify_flash(flasher, args, flash_params)
|
|
flasher.boot_fw()
|
|
|
|
|
|
def write_flash_no_stub(esp, args):
|
|
"""Write flash directly via the bootloader, no stub
|
|
|
|
The existence of this function is a hack. Before this is done,
|
|
the stub needs to speak the ESP bootloader protocol so
|
|
we can roll all this code up into the write_flash().
|
|
|
|
This function also includes some support for Espressif internal
|
|
testing functions that probably aren't useful for most people, and
|
|
need to go live somewhere... maybe a generic "bootloader command"
|
|
function or something?
|
|
|
|
"""
|
|
flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
|
|
flash_size_freq = esp.parse_flash_size_arg(args.flash_size)
|
|
flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
|
|
flash_info = struct.pack('BB', flash_mode, flash_size_freq)
|
|
|
|
print "\n\n"
|
|
print "********************************"
|
|
uc_is_hspi = int(args.ucIsHspi,16)
|
|
uc_is_legacy = int(args.ucIsLegacy,16) & 0xff
|
|
print "IS HSPI: 0x%08x" % (uc_is_hspi),type(uc_is_hspi)
|
|
print "--------------------------"
|
|
print "IS LEGACY: 0x%02x" % uc_is_legacy,type(uc_is_legacy)
|
|
print "*********************************"
|
|
print "SENDING SPI ATTACH COMMAND"
|
|
print "--------------"
|
|
esp.flash_spi_attach_req(uc_is_hspi,uc_is_legacy)
|
|
print "START DOWNLOADING..."
|
|
|
|
for address, argfile in args.addr_filename:
|
|
print 'Erasing flash...'
|
|
if args.compress:
|
|
uncimage = argfile.read()
|
|
calcmd5 = hashlib.md5(uncimage).hexdigest()
|
|
uncsize = len(uncimage)
|
|
image = zlib.compress(uncimage, 9)
|
|
blocks = div_roundup(len(image), esp.ESP_FLASH_BLOCK)
|
|
esp.flash_defl_begin(len(uncimage),len(image), address)
|
|
else:
|
|
image = argfile.read()
|
|
calcmd5 = hashlib.md5(image).hexdigest()
|
|
uncsize = len(image)
|
|
blocks = div_roundup(len(image), esp.ESP_FLASH_BLOCK)
|
|
esp.flash_begin(blocks * esp.ESP_FLASH_BLOCK, address)
|
|
argfile.seek(0) # in case we need it again
|
|
seq = 0
|
|
written = 0
|
|
t = time.time()
|
|
header_block = None
|
|
while len(image) > 0:
|
|
print '\rWriting at 0x%08x... (%d %%)' % (address + seq * esp.ESP_FLASH_BLOCK, 100 * (seq + 1) / blocks),
|
|
sys.stdout.flush()
|
|
block = image[0:esp.ESP_FLASH_BLOCK]
|
|
if args.compress:
|
|
esp.flash_defl_block(block, seq)
|
|
else:
|
|
# Pad the last block
|
|
block = block + '\xff' * (esp.ESP_FLASH_BLOCK - len(block))
|
|
# Fix sflash config data
|
|
if address == 0 and seq == 0 and block[0] == '\xe9':
|
|
block = block[0:2] + flash_info + block[4:]
|
|
header_block = block
|
|
esp.flash_block(block, seq)
|
|
image = image[esp.ESP_FLASH_BLOCK:]
|
|
seq += 1
|
|
written += len(block)
|
|
t = time.time() - t
|
|
print '\rWrote %d bytes at 0x%08x in %.1f seconds (%.1f kbit/s)...' % (written, address, t, written / t * 8 / 1000)
|
|
res = esp.flash_md5sum(address, uncsize)
|
|
if res != calcmd5:
|
|
print 'File md5: %s' % calcmd5
|
|
print 'Flash md5: %s' % res
|
|
raise FatalError("MD5 of file does not match data in flash!")
|
|
else:
|
|
print 'Hash of data verified.'
|
|
print '\nLeaving...'
|
|
if args.flash_mode == 'dio':
|
|
esp.flash_unlock_dio()
|
|
else:
|
|
esp.flash_begin(0, 0)
|
|
if args.compress:
|
|
esp.flash_defl_finish(False)
|
|
else:
|
|
esp.flash_finish(False)
|
|
if args.verify:
|
|
print 'Verifying just-written flash...'
|
|
verify_flash(esp, args, header_block)
|
|
|
|
|
|
def image_info(args):
|
|
image = LoadFirmwareImage(args.chip, args.filename)
|
|
print('Image version: %d' % image.version)
|
|
print('Entry point: %08x' % image.entrypoint) if image.entrypoint != 0 else 'Entry point not set'
|
|
print '%d segments' % len(image.segments)
|
|
print
|
|
checksum = ESPROM.ESP_CHECKSUM_MAGIC
|
|
idx = 0
|
|
for seg in image.segments:
|
|
idx += 1
|
|
print 'Segment %d: %r' % (idx, seg)
|
|
checksum = ESPROM.checksum(seg.data, checksum)
|
|
print
|
|
print 'Checksum: %02x (%s)' % (image.checksum, 'valid' if image.checksum == checksum else 'invalid!')
|
|
|
|
|
|
def make_image(args):
|
|
image = ESPFirmwareImage()
|
|
if len(args.segfile) == 0:
|
|
raise FatalError('No segments specified')
|
|
if len(args.segfile) != len(args.segaddr):
|
|
raise FatalError('Number of specified files does not match number of specified addresses')
|
|
for (seg, addr) in zip(args.segfile, args.segaddr):
|
|
data = file(seg, 'rb').read()
|
|
image.segments.append(ImageSegment(addr, data))
|
|
image.entrypoint = args.entrypoint
|
|
image.save(args.output)
|
|
|
|
|
|
def elf2image(args):
|
|
e = ELFFile(args.input)
|
|
if args.chip == 'auto': # Default to ESP8266 for backwards compatibility
|
|
print "Creating image for ESP8266..."
|
|
args.chip == 'esp8266'
|
|
|
|
if args.chip == 'esp31':
|
|
raise FatalError("No elf2image support for ESP31. Use gen_appimage.py from the ESP31 SDK")
|
|
elif args.chip == 'esp32':
|
|
image = ESP32FirmwareImage()
|
|
elif args.version == '1': # ESP8266
|
|
image = ESPFirmwareImage()
|
|
else:
|
|
image = OTAFirmwareImage()
|
|
image.entrypoint = e.entrypoint
|
|
image.segments = e.sections # ELFSection is a subclass of ImageSegment
|
|
image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
|
|
image.flash_size_freq = ESP8266ROM.FLASH_SIZES[args.flash_size]
|
|
image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
|
|
|
|
if args.output is None:
|
|
args.output = image.default_output_name(args.input)
|
|
image.save(args.output)
|
|
|
|
|
|
def read_mac(esp, args):
|
|
mac = esp.read_mac()
|
|
print 'MAC: %s' % ':'.join(map(lambda x: '%02x' % x, mac))
|
|
|
|
|
|
def chip_id(esp, args):
|
|
chipid = esp.chip_id()
|
|
print 'Chip ID: 0x%08x' % chipid
|
|
|
|
|
|
def erase_flash(esp, args):
|
|
print 'Erasing flash (this may take a while)...'
|
|
flasher = CesantaFlasher(esp, args.baud)
|
|
flasher.flash_erase()
|
|
print 'Erase completed successfully.'
|
|
|
|
|
|
def run(esp, args):
|
|
esp.run()
|
|
|
|
|
|
def flash_id(esp, args):
|
|
flash_id = esp.flash_id()
|
|
print 'Manufacturer: %02x' % (flash_id & 0xff)
|
|
print 'Device: %02x%02x' % ((flash_id >> 8) & 0xff, (flash_id >> 16) & 0xff)
|
|
|
|
|
|
def read_flash(esp, args):
|
|
flasher = CesantaFlasher(esp, args.baud)
|
|
t = time.time()
|
|
data = flasher.flash_read(args.address, args.size, not args.no_progress)
|
|
t = time.time() - t
|
|
print ('\rRead %d bytes at 0x%x in %.1f seconds (%.1f kbit/s)...'
|
|
% (len(data), args.address, t, len(data) / t * 8 / 1000))
|
|
file(args.filename, 'wb').write(data)
|
|
|
|
|
|
def _verify_flash(flasher, args, flash_params=None):
|
|
differences = False
|
|
for address, argfile in args.addr_filename:
|
|
image = argfile.read()
|
|
argfile.seek(0) # rewind in case we need it again
|
|
if address == 0 and image[0] == '\xe9' and flash_params is not None:
|
|
image = image[0:2] + flash_params + image[4:]
|
|
image_size = len(image)
|
|
print 'Verifying 0x%x (%d) bytes @ 0x%08x in flash against %s...' % (image_size, image_size, address, argfile.name)
|
|
# Try digest first, only read if there are differences.
|
|
digest, _ = flasher.flash_digest(address, image_size)
|
|
digest = hexify(digest).upper()
|
|
expected_digest = hashlib.md5(image).hexdigest().upper()
|
|
if digest == expected_digest:
|
|
print '-- verify OK (digest matched)'
|
|
continue
|
|
else:
|
|
differences = True
|
|
if getattr(args, 'diff', 'no') != 'yes':
|
|
print '-- verify FAILED (digest mismatch)'
|
|
continue
|
|
|
|
flash = flasher.flash_read(address, image_size)
|
|
assert flash != image
|
|
diff = [i for i in xrange(image_size) if flash[i] != image[i]]
|
|
print '-- verify FAILED: %d differences, first @ 0x%08x' % (len(diff), address + diff[0])
|
|
for d in diff:
|
|
print ' %08x %02x %02x' % (address + d, ord(flash[d]), ord(image[d]))
|
|
if differences:
|
|
raise FatalError("Verify failed.")
|
|
|
|
|
|
def verify_flash(esp, args, flash_params=None):
|
|
flasher = CesantaFlasher(esp)
|
|
_verify_flash(flasher, args, flash_params)
|
|
|
|
|
|
def version(args):
|
|
print __version__
|
|
|
|
#
|
|
# End of operations functions
|
|
#
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='esptool.py v%s - ESP8266 ROM Bootloader Utility' % __version__, prog='esptool')
|
|
|
|
parser.add_argument('--chip', '-c',
|
|
help='Target chip type',
|
|
choices=['auto', 'esp8266', 'esp31', 'esp32'],
|
|
default=os.environ.get('ESPTOOL_CHIP', 'auto'))
|
|
|
|
parser.add_argument(
|
|
'--port', '-p',
|
|
help='Serial port device',
|
|
default=os.environ.get('ESPTOOL_PORT', ESPROM.DEFAULT_PORT))
|
|
|
|
parser.add_argument(
|
|
'--baud', '-b',
|
|
help='Serial port baud rate used when flashing/reading',
|
|
type=arg_auto_int,
|
|
default=os.environ.get('ESPTOOL_BAUD', ESPROM.ESP_ROM_BAUD))
|
|
|
|
subparsers = parser.add_subparsers(
|
|
dest='operation',
|
|
help='Run esptool {command} -h for additional help')
|
|
|
|
parser_load_ram = subparsers.add_parser(
|
|
'load_ram',
|
|
help='Download an image to RAM and execute')
|
|
parser_load_ram.add_argument('filename', help='Firmware image')
|
|
|
|
parser_dump_mem = subparsers.add_parser(
|
|
'dump_mem',
|
|
help='Dump arbitrary memory to disk')
|
|
parser_dump_mem.add_argument('address', help='Base address', type=arg_auto_int)
|
|
parser_dump_mem.add_argument('size', help='Size of region to dump', type=arg_auto_int)
|
|
parser_dump_mem.add_argument('filename', help='Name of binary dump')
|
|
|
|
parser_read_mem = subparsers.add_parser(
|
|
'read_mem',
|
|
help='Read arbitrary memory location')
|
|
parser_read_mem.add_argument('address', help='Address to read', type=arg_auto_int)
|
|
|
|
parser_write_mem = subparsers.add_parser(
|
|
'write_mem',
|
|
help='Read-modify-write to arbitrary memory location')
|
|
parser_write_mem.add_argument('address', help='Address to write', type=arg_auto_int)
|
|
parser_write_mem.add_argument('value', help='Value', type=arg_auto_int)
|
|
parser_write_mem.add_argument('mask', help='Mask of bits to write', type=arg_auto_int)
|
|
|
|
def add_spi_flash_subparsers(parent):
|
|
""" Add common parser arguments for SPI flash properties """
|
|
parent.add_argument('--flash_freq', '-ff', help='SPI Flash frequency',
|
|
choices=['40m', '26m', '20m', '80m'],
|
|
default=os.environ.get('ESPTOOL_FF', '40m'))
|
|
parent.add_argument('--flash_mode', '-fm', help='SPI Flash mode',
|
|
choices=['qio', 'qout', 'dio', 'dout'],
|
|
default=os.environ.get('ESPTOOL_FM', 'qio'))
|
|
parent.add_argument('--flash_size', '-fs', help='SPI Flash size in MegaBytes (1MB, 2MB, 4MB, 8MB, 16M)'
|
|
' plus ESP8266-only (256KB, 512KB, 2MB-c1, 4MB-c1, 4MB-2)',
|
|
action=FlashSizeAction,
|
|
default=os.environ.get('ESPTOOL_FS', '1MB'))
|
|
|
|
parser_write_flash = subparsers.add_parser(
|
|
'write_flash',
|
|
help='Write a binary blob to flash')
|
|
parser_write_flash.add_argument('addr_filename', metavar='<address> <filename>', help='Address followed by binary filename, separated by space',
|
|
action=AddrFilenamePairAction)
|
|
add_spi_flash_subparsers(parser_write_flash)
|
|
parser_write_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true")
|
|
parser_write_flash.add_argument('--verify', help='Verify just-written data (only necessary if very cautious, data is already CRCed', action='store_true')
|
|
parser_write_flash.add_argument('--ucIsHspi', '-ih', help='Config SPI PORT/PINS (Espressif internal feature)',default='0')
|
|
parser_write_flash.add_argument('--ucIsLegacy', '-il', help='Config SPI LEGACY (Espressif internal feature)',default='0')
|
|
parser_write_flash.add_argument('--compress', '-z', help='Compress data in transfer',action="store_true")
|
|
|
|
subparsers.add_parser(
|
|
'run',
|
|
help='Run application code in flash')
|
|
|
|
parser_image_info = subparsers.add_parser(
|
|
'image_info',
|
|
help='Dump headers from an application image')
|
|
parser_image_info.add_argument('filename', help='Image file to parse')
|
|
|
|
parser_make_image = subparsers.add_parser(
|
|
'make_image',
|
|
help='Create an application image from binary files')
|
|
parser_make_image.add_argument('output', help='Output image file')
|
|
parser_make_image.add_argument('--segfile', '-f', action='append', help='Segment input file')
|
|
parser_make_image.add_argument('--segaddr', '-a', action='append', help='Segment base address', type=arg_auto_int)
|
|
parser_make_image.add_argument('--entrypoint', '-e', help='Address of entry point', type=arg_auto_int, default=0)
|
|
|
|
parser_elf2image = subparsers.add_parser(
|
|
'elf2image',
|
|
help='Create an application image from ELF file')
|
|
parser_elf2image.add_argument('input', help='Input ELF file')
|
|
parser_elf2image.add_argument('--output', '-o', help='Output filename prefix (for version 1 image), or filename (for version 2 single image)', type=str)
|
|
parser_elf2image.add_argument('--version', '-e', help='Output image version', choices=['1','2'], default='1')
|
|
add_spi_flash_subparsers(parser_elf2image)
|
|
|
|
subparsers.add_parser(
|
|
'read_mac',
|
|
help='Read MAC address from OTP ROM')
|
|
|
|
subparsers.add_parser(
|
|
'chip_id',
|
|
help='Read Chip ID from OTP ROM')
|
|
|
|
subparsers.add_parser(
|
|
'flash_id',
|
|
help='Read SPI flash manufacturer and device ID')
|
|
|
|
parser_read_flash = subparsers.add_parser(
|
|
'read_flash',
|
|
help='Read SPI flash content')
|
|
parser_read_flash.add_argument('address', help='Start address', type=arg_auto_int)
|
|
parser_read_flash.add_argument('size', help='Size of region to dump', type=arg_auto_int)
|
|
parser_read_flash.add_argument('filename', help='Name of binary dump')
|
|
parser_read_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true")
|
|
|
|
parser_verify_flash = subparsers.add_parser(
|
|
'verify_flash',
|
|
help='Verify a binary blob against flash')
|
|
parser_verify_flash.add_argument('addr_filename', help='Address and binary file to verify there, separated by space',
|
|
action=AddrFilenamePairAction)
|
|
parser_verify_flash.add_argument('--diff', '-d', help='Show differences',
|
|
choices=['no', 'yes'], default='no')
|
|
|
|
subparsers.add_parser(
|
|
'erase_flash',
|
|
help='Perform Chip Erase on SPI flash')
|
|
|
|
subparsers.add_parser(
|
|
'version', help='Print esptool version')
|
|
|
|
# internal sanity check - every operation matches a module function of the same name
|
|
for operation in subparsers.choices.keys():
|
|
assert operation in globals(), "%s should be a module function" % operation
|
|
|
|
args = parser.parse_args()
|
|
|
|
print 'esptool.py v%s' % __version__
|
|
|
|
# operation function can take 1 arg (args), 2 args (esp, arg)
|
|
# or be a member function of the ESPROM class.
|
|
|
|
operation_func = globals()[args.operation]
|
|
operation_args,_,_,_ = inspect.getargspec(operation_func)
|
|
if operation_args[0] == 'esp': # operation function takes an ESPROM connection object
|
|
initial_baud = min(ESPROM.ESP_ROM_BAUD, args.baud) # don't sync faster than the default baud rate
|
|
chip_constructor_fun = {
|
|
'auto': ESPROM.detect_chip,
|
|
'esp8266': ESP8266ROM,
|
|
'esp31': ESP31ROM,
|
|
'esp32': ESP32ROM,
|
|
}[args.chip]
|
|
esp = chip_constructor_fun(args.port, initial_baud)
|
|
# try to set a higher baud, this is a no-op if we need to
|
|
# wait for the flasher stub to kick in before doing this.
|
|
esp.change_baud(args.baud)
|
|
|
|
operation_func(esp, args)
|
|
else:
|
|
operation_func(args)
|
|
|
|
|
|
class FlashSizeAction(argparse.Action):
|
|
""" Custom flash size parser class to support backwards compatibility with megabit size arguments.
|
|
|
|
(At next major relase, remove deprecated sizes and this can become a 'normal' choices= argument again.)
|
|
"""
|
|
def __init__(self, option_strings, dest, nargs=1, **kwargs):
|
|
super(FlashSizeAction, self).__init__(option_strings, dest, nargs, **kwargs)
|
|
|
|
def __call__(self, parser, namespace, values, option_string=None):
|
|
try:
|
|
value = {
|
|
'2m': '256KB',
|
|
'4m': '512KB',
|
|
'8m': '1MB',
|
|
'16m': '2MB',
|
|
'32m': '4MB',
|
|
'16m-c1': '2MB-c1',
|
|
'32m-c1': '4MB-c1',
|
|
'32m-c2': '4MB-c2'
|
|
}[values[0]]
|
|
print("WARNING: Flash size arguments in megabits like '%s' are deprecated." % (values[0]))
|
|
print("Please use the equivalent size '%s'." % (value))
|
|
print("Megabit arguments may be removed in a future release.")
|
|
except KeyError:
|
|
values = values[0]
|
|
|
|
known_sizes = dict(ESP8266ROM.FLASH_SIZES)
|
|
known_sizes.update(ESP32ROM.FLASH_SIZES)
|
|
if value not in known_sizes:
|
|
raise argparse.ArgumentError(self, '%s is not a known flash size. Known sizes: %s' % (value, ", ".join(known_sizes.keys())))
|
|
setattr(namespace, self.dest, value)
|
|
|
|
|
|
class AddrFilenamePairAction(argparse.Action):
|
|
""" Custom parser class for the address/filename pairs passed as arguments """
|
|
def __init__(self, option_strings, dest, nargs='+', **kwargs):
|
|
super(AddrFilenamePairAction, self).__init__(option_strings, dest, nargs, **kwargs)
|
|
|
|
def __call__(self, parser, namespace, values, option_string=None):
|
|
# validate pair arguments
|
|
pairs = []
|
|
for i in range(0,len(values),2):
|
|
try:
|
|
address = int(values[i],0)
|
|
except ValueError as e:
|
|
raise argparse.ArgumentError(self,'Address "%s" must be a number' % values[i])
|
|
try:
|
|
argfile = open(values[i + 1], 'rb')
|
|
except IOError as e:
|
|
raise argparse.ArgumentError(self, e)
|
|
except IndexError:
|
|
raise argparse.ArgumentError(self,'Must be pairs of an address and the binary filename to write there')
|
|
pairs.append((address, argfile))
|
|
setattr(namespace, self.dest, pairs)
|
|
|
|
# This is "wrapped" stub_flasher.c, to be loaded using run_stub.
|
|
_CESANTA_FLASHER_STUB = """\
|
|
{"code_start": 1074790404, "code": "080000601C000060000000601000006031FCFF71FCFF\
|
|
81FCFFC02000680332D218C020004807404074DCC48608005823C0200098081BA5A9239245005803\
|
|
1B555903582337350129230B446604DFC6F3FF21EEFFC0200069020DF0000000010078480040004A\
|
|
0040B449004012C1F0C921D911E901DD0209312020B4ED033C2C56C2073020B43C3C56420701F5FF\
|
|
C000003C4C569206CD0EEADD860300202C4101F1FFC0000056A204C2DCF0C02DC0CC6CCAE2D1EAFF\
|
|
0606002030F456D3FD86FBFF00002020F501E8FFC00000EC82D0CCC0C02EC0C73DEB2ADC46030020\
|
|
2C4101E1FFC00000DC42C2DCF0C02DC056BCFEC602003C5C8601003C6C4600003C7C08312D0CD811\
|
|
C821E80112C1100DF0000C180000140010400C0000607418000064180000801800008C1800008418\
|
|
0000881800009018000018980040880F0040A80F0040349800404C4A0040740F0040800F0040980F\
|
|
00400099004012C1E091F5FFC961CD0221EFFFE941F9310971D9519011C01A223902E2D1180C0222\
|
|
6E1D21E4FF31E9FF2AF11A332D0F42630001EAFFC00000C030B43C2256A31621E1FF1A2228022030\
|
|
B43C3256B31501ADFFC00000DD023C4256ED1431D6FF4D010C52D90E192E126E0101DDFFC0000021\
|
|
D2FF32A101C020004802303420C0200039022C0201D7FFC00000463300000031CDFF1A333803D023\
|
|
C03199FF27B31ADC7F31CBFF1A3328030198FFC0000056C20E2193FF2ADD060E000031C6FF1A3328\
|
|
030191FFC0000056820DD2DD10460800000021BEFF1A2228029CE231BCFFC020F51A33290331BBFF\
|
|
C02C411A332903C0F0F4222E1D22D204273D9332A3FFC02000280E27B3F721ABFF381E1A2242A400\
|
|
01B5FFC00000381E2D0C42A40001B3FFC0000056120801B2FFC00000C02000280EC2DC0422D2FCC0\
|
|
2000290E01ADFFC00000222E1D22D204226E1D281E22D204E7B204291E860000126E012198FF32A0\
|
|
042A21C54C003198FF222E1D1A33380337B202C6D6FF2C02019FFFC000002191FF318CFF1A223A31\
|
|
019CFFC00000218DFF1C031A22C549000C02060300003C528601003C624600003C72918BFF9A1108\
|
|
71C861D851E841F83112C1200DF00010000068100000581000007010000074100000781000007C10\
|
|
0000801000001C4B0040803C004091FDFF12C1E061F7FFC961E941F9310971D9519011C01A662906\
|
|
21F3FFC2D1101A22390231F2FF0C0F1A33590331EAFFF26C1AED045C2247B3028636002D0C016DFF\
|
|
C0000021E5FF41EAFF2A611A4469040622000021E4FF1A222802F0D2C0D7BE01DD0E31E0FF4D0D1A\
|
|
3328033D0101E2FFC00000561209D03D2010212001DFFFC000004D0D2D0C3D01015DFFC0000041D5\
|
|
FFDAFF1A444804D0648041D2FF1A4462640061D1FF106680622600673F1331D0FF10338028030C43\
|
|
853A002642164613000041CAFF222C1A1A444804202FC047328006F6FF222C1A273F3861C2FF222C\
|
|
1A1A6668066732B921BDFF3D0C1022800148FFC0000021BAFF1C031A2201BFFFC000000C02460300\
|
|
5C3206020000005C424600005C5291B7FF9A110871C861D851E841F83112C1200DF0B0100000C010\
|
|
0000D010000012C1E091FEFFC961D951E9410971F931CD039011C0ED02DD0431A1FF9C1422A06247\
|
|
B302062D0021F4FF1A22490286010021F1FF1A223902219CFF2AF12D0F011FFFC00000461C0022D1\
|
|
10011CFFC0000021E9FFFD0C1A222802C7B20621E6FF1A22F8022D0E3D014D0F0195FFC000008C52\
|
|
22A063C6180000218BFF3D01102280F04F200111FFC00000AC7D22D1103D014D0F010DFFC0000021\
|
|
D6FF32D110102280010EFFC0000021D3FF1C031A220185FFC00000FAEEF0CCC056ACF821CDFF317A\
|
|
FF1A223A310105FFC0000021C9FF1C031A22017CFFC000002D0C91C8FF9A110871C861D851E841F8\
|
|
3112C1200DF0000200600000001040020060FFFFFF0012C1E00C02290131FAFF21FAFF026107C961\
|
|
C02000226300C02000C80320CC10564CFF21F5FFC02000380221F4FF20231029010C432D010163FF\
|
|
C0000008712D0CC86112C1200DF00080FE3F8449004012C1D0C9A109B17CFC22C1110C13C51C0026\
|
|
1202463000220111C24110B68202462B0031F5FF3022A02802A002002D011C03851A0066820A2801\
|
|
32210105A6FF0607003C12C60500000010212032A01085180066A20F2221003811482105B3FF2241\
|
|
10861A004C1206FDFF2D011C03C5160066B20E280138114821583185CFFF06F7FF005C1286F5FF00\
|
|
10212032A01085140066A20D2221003811482105E1FF06EFFF0022A06146EDFF45F0FFC6EBFF0000\
|
|
01D2FFC0000006E9FF000C022241100C1322C110C50F00220111060600000022C1100C13C50E0022\
|
|
011132C2FA303074B6230206C8FF08B1C8A112C1300DF0000000000010404F484149007519031027\
|
|
000000110040A8100040BC0F0040583F0040CC2E00401CE20040D83900408000004021F4FF12C1E0\
|
|
C961C80221F2FF097129010C02D951C91101F4FFC0000001F3FFC00000AC2C22A3E801F2FFC00000\
|
|
21EAFFC031412A233D0C01EFFFC000003D0222A00001EDFFC00000C1E4FF2D0C01E8FFC000002D01\
|
|
32A004450400C5E7FFDD022D0C01E3FFC00000666D1F4B2131DCFF4600004B22C0200048023794F5\
|
|
31D9FFC0200039023DF08601000001DCFFC000000871C861D85112C1200DF000000012C1F0026103\
|
|
01EAFEC00000083112C1100DF000643B004012C1D0E98109B1C9A1D991F97129013911E2A0C001FA\
|
|
FFC00000CD02E792F40C0DE2A0C0F2A0DB860D00000001F4FFC00000204220E71240F7921C226102\
|
|
01EFFFC0000052A0DC482157120952A0DD571205460500004D0C3801DA234242001BDD3811379DC5\
|
|
C6000000000C0DC2A0C001E3FFC00000C792F608B12D0DC8A1D891E881F87112C1300DF00000", "\
|
|
entry": 1074792180, "num_params": 1, "params_start": 1074790400, "data": "FE0510\
|
|
401A0610403B0610405A0610407A061040820610408C0610408C061040", "data_start": 10736\
|
|
43520}
|
|
"""
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
main()
|
|
except FatalError as e:
|
|
print '\nA fatal error occurred: %s' % e
|
|
sys.exit(2)
|