esp-idf/components/esp_hw_support/hw_random.c

113 wiersze
4.2 KiB
C

/*
* SPDX-FileCopyrightText: 2016-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_cpu.h"
#include "soc/wdev_reg.h"
#include "esp_private/esp_clk.h"
#include "soc/soc_caps.h"
#if !ESP_TEE_BUILD
#include "esp_private/startup_internal.h"
#endif
#if SOC_LP_TIMER_SUPPORTED
#include "hal/lp_timer_hal.h"
#endif
#if SOC_RNG_CLOCK_IS_INDEPENDENT
#include "hal/lp_clkrst_ll.h"
#endif
#if defined CONFIG_IDF_TARGET_ESP32S3
#define APB_CYCLE_WAIT_NUM (1778) /* If APB clock is 80 MHz, the maximum sampling frequency is around 45 KHz*/
/* 45 KHz reading frequency is the maximum we have tested so far on S3 */
#elif defined CONFIG_IDF_TARGET_ESP32C6
#define APB_CYCLE_WAIT_NUM (160 * 16) /* On ESP32C6, we only read one byte at a time, then XOR the value with
* an asynchronous timer (see code below).
* The current value translates to a sampling frequency of around 62.5 KHz
* for reading 8 bit samples, which is the rate at which the RNG was tested,
* plus additional overhead for the calculation, making it slower. */
#elif defined CONFIG_IDF_TARGET_ESP32H2
#define APB_CYCLE_WAIT_NUM (96 * 16) /* Same reasoning as for ESP32C6, but the CPU frequency on ESP32H2 is
* 96MHz instead of 160 MHz */
#elif defined CONFIG_IDF_TARGET_ESP32P4
/* On ESP32P4, the RNG has been tested with around 75 KHz bytes reading frequency */
#define APB_CYCLE_WAIT_NUM (CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ * 14)
#else
#define APB_CYCLE_WAIT_NUM (16)
#endif
uint32_t IRAM_ATTR esp_random(void)
{
/* The PRNG which implements WDEV_RANDOM register gets 2 bits
* of extra entropy from a hardware randomness source every APB clock cycle
* (provided WiFi or BT are enabled). To make sure entropy is not drained
* faster than it is added, this function needs to wait for at least 16 APB
* clock cycles after reading previous word. This implementation may actually
* wait a bit longer due to extra time spent in arithmetic and branch statements.
*
* As a (probably unnecessary) precaution to avoid returning the
* RNG state as-is, the result is XORed with additional
* WDEV_RND_REG reads while waiting.
*/
/* This code does not run in a critical section, so CPU frequency switch may
* happens while this code runs (this will not happen in the current
* implementation, but possible in the future). However if that happens,
* the number of cycles spent on frequency switching will certainly be more
* than the number of cycles we need to wait here.
*/
uint32_t cpu_to_apb_freq_ratio = esp_clk_cpu_freq() / esp_clk_apb_freq();
static uint32_t last_ccount = 0;
uint32_t ccount;
uint32_t result = 0;
#if SOC_LP_TIMER_SUPPORTED
for (size_t i = 0; i < sizeof(result); i++) {
do {
ccount = esp_cpu_get_cycle_count();
result ^= REG_READ(WDEV_RND_REG);
} while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);
uint32_t current_rtc_timer_counter = (lp_timer_hal_get_cycle_count() & 0xFF);
result ^= ((result ^ current_rtc_timer_counter) & 0xFF) << (i * 8);
}
#else
do {
ccount = esp_cpu_get_cycle_count();
result ^= REG_READ(WDEV_RND_REG);
} while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);
#endif
last_ccount = ccount;
return result ^ REG_READ(WDEV_RND_REG);
}
void esp_fill_random(void *buf, size_t len)
{
assert(buf != NULL);
uint8_t *buf_bytes = (uint8_t *)buf;
while (len > 0) {
uint32_t word = esp_random();
uint32_t to_copy = MIN(sizeof(word), len);
memcpy(buf_bytes, &word, to_copy);
buf_bytes += to_copy;
len -= to_copy;
}
}
#if SOC_RNG_CLOCK_IS_INDEPENDENT && !ESP_TEE_BUILD
ESP_SYSTEM_INIT_FN(init_rng_clock, SECONDARY, BIT(0), 102)
{
_lp_clkrst_ll_enable_rng_clock(true);
return ESP_OK;
}
#endif