esp-idf/components/esp_hw_support/esp_clk.c

153 wiersze
4.0 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <sys/param.h>
#include <sys/lock.h>
#include "freertos/FreeRTOS.h"
#include "esp_attr.h"
#include "soc/rtc.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/rtc.h"
#include "esp32/clk.h"
#include "esp32/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/rtc.h"
#include "esp32s2/clk.h"
#include "esp32s2/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/rtc.h"
#include "esp32s3/clk.h"
#include "esp32s3/rtc.h"
#include "esp32s3/rom/ets_sys.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/rtc.h"
#include "esp32c3/clk.h"
#include "esp32c3/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32H2
#include "esp32h2/rom/rtc.h"
#include "esp32h2/clk.h"
#include "esp32h2/rtc.h"
#endif
#define MHZ (1000000)
// g_ticks_us defined in ROMs for PRO and APP CPU
extern uint32_t g_ticks_per_us_pro;
#if CONFIG_IDF_TARGET_ESP32
#ifndef CONFIG_FREERTOS_UNICORE
extern uint32_t g_ticks_per_us_app;
#endif
#endif
static portMUX_TYPE s_esp_rtc_time_lock = portMUX_INITIALIZER_UNLOCKED;
static RTC_NOINIT_ATTR uint64_t s_esp_rtc_time_us, s_rtc_last_ticks;
inline static int IRAM_ATTR s_get_cpu_freq_mhz(void)
{
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32H2
return ets_get_cpu_frequency();
#else
return g_ticks_per_us_pro;
#endif
}
int IRAM_ATTR esp_clk_cpu_freq(void)
{
return s_get_cpu_freq_mhz() * MHZ;
}
int IRAM_ATTR esp_clk_apb_freq(void)
{
return MIN(s_get_cpu_freq_mhz(), 80) * MHZ;
}
int IRAM_ATTR esp_clk_xtal_freq(void)
{
return rtc_clk_xtal_freq_get() * MHZ;
}
#if !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)
{
/* Update scale factors used by esp_rom_delay_us */
g_ticks_per_us_pro = ticks_per_us;
#if CONFIG_IDF_TARGET_ESP32
#ifndef CONFIG_FREERTOS_UNICORE
g_ticks_per_us_app = ticks_per_us;
#endif
#endif
}
#endif
uint64_t esp_rtc_get_time_us(void)
{
portENTER_CRITICAL_SAFE(&s_esp_rtc_time_lock);
const uint32_t cal = esp_clk_slowclk_cal_get();
if (cal == 0) {
s_esp_rtc_time_us = 0;
s_rtc_last_ticks = 0;
}
const uint64_t rtc_this_ticks = rtc_time_get();
const uint64_t ticks = rtc_this_ticks - s_rtc_last_ticks;
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
* for a 32kHz clock. We need to calculate (assuming no overflow):
* (ticks * cal) >> RTC_CLK_CAL_FRACT
*
* An overflow in the (ticks * cal) multiplication would cause time to
* wrap around after approximately 13 days, which is probably not enough
* for some applications.
* Therefore multiplication is split into two terms, for the lower 32-bit
* and the upper 16-bit parts of "ticks", i.e.:
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
*/
const uint64_t ticks_low = ticks & UINT32_MAX;
const uint64_t ticks_high = ticks >> 32;
const uint64_t delta_time_us = ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
s_esp_rtc_time_us += delta_time_us;
s_rtc_last_ticks = rtc_this_ticks;
portEXIT_CRITICAL_SAFE(&s_esp_rtc_time_lock);
return s_esp_rtc_time_us;
}
void esp_clk_slowclk_cal_set(uint32_t new_cal)
{
#if defined(CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER)
/* To force monotonic time values even when clock calibration value changes,
* we adjust esp_rtc_time
*/
esp_rtc_get_time_us();
#endif // CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER
REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal);
}
uint32_t esp_clk_slowclk_cal_get(void)
{
return REG_READ(RTC_SLOW_CLK_CAL_REG);
}
uint64_t esp_clk_rtc_time(void)
{
#ifdef CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER
return esp_rtc_get_time_us();
#else
return 0;
#endif
}
void esp_clk_private_lock(void)
{
portENTER_CRITICAL(&s_esp_rtc_time_lock);
}
void esp_clk_private_unlock(void)
{
portEXIT_CRITICAL(&s_esp_rtc_time_lock);
}