kopia lustrzana https://github.com/espressif/esp-idf
163 wiersze
6.8 KiB
C
163 wiersze
6.8 KiB
C
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// The HAL layer for SPI (common part)
|
|
|
|
#include "hal/spi_hal.h"
|
|
#include "hal/log.h"
|
|
#include "soc/soc_caps.h"
|
|
|
|
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
|
|
#if SOC_GDMA_SUPPORTED
|
|
#include "soc/gdma_struct.h"
|
|
#include "hal/gdma_ll.h"
|
|
|
|
#define spi_dma_ll_rx_enable_burst_data(dev, chan, enable) gdma_ll_rx_enable_data_burst(&GDMA, chan, enable);
|
|
#define spi_dma_ll_tx_enable_burst_data(dev, chan, enable) gdma_ll_tx_enable_data_burst(&GDMA, chan, enable);
|
|
#define spi_dma_ll_rx_enable_burst_desc(dev, chan, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, chan, enable);
|
|
#define spi_dma_ll_tx_enable_burst_desc(dev, chan, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, chan, enable);
|
|
#define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, chan, enable);
|
|
#define spi_dma_ll_set_out_eof_generation(dev, chan, enable) gdma_ll_tx_set_eof_mode(&GDMA, chan, enable);
|
|
#endif
|
|
|
|
static const char SPI_HAL_TAG[] = "spi_hal";
|
|
#define SPI_HAL_CHECK(a, str, ret_val, ...) \
|
|
if (!(a)) { \
|
|
HAL_LOGE(SPI_HAL_TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
|
return (ret_val); \
|
|
}
|
|
|
|
static void s_spi_hal_dma_init_config(const spi_hal_context_t *hal)
|
|
{
|
|
spi_dma_ll_rx_enable_burst_data(hal->dma_in, hal->rx_dma_chan, 1);
|
|
spi_dma_ll_tx_enable_burst_data(hal->dma_out, hal->tx_dma_chan, 1);
|
|
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, hal->rx_dma_chan, 1);
|
|
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, hal->tx_dma_chan ,1);
|
|
}
|
|
|
|
void spi_hal_init(spi_hal_context_t *hal, uint32_t host_id, const spi_hal_config_t *config)
|
|
{
|
|
memset(hal, 0, sizeof(spi_hal_context_t));
|
|
spi_dev_t *hw = SPI_LL_GET_HW(host_id);
|
|
hal->hw = hw;
|
|
hal->dma_in = config->dma_in;
|
|
hal->dma_out = config->dma_out;
|
|
hal->dma_enabled = config->dma_enabled;
|
|
hal->dmadesc_tx = config->dmadesc_tx;
|
|
hal->dmadesc_rx = config->dmadesc_rx;
|
|
hal->tx_dma_chan = config->tx_dma_chan;
|
|
hal->rx_dma_chan = config->rx_dma_chan;
|
|
hal->dmadesc_n = config->dmadesc_n;
|
|
|
|
spi_ll_master_init(hw);
|
|
s_spi_hal_dma_init_config(hal);
|
|
|
|
//Force a transaction done interrupt. This interrupt won't fire yet because
|
|
//we initialized the SPI interrupt as disabled. This way, we can just
|
|
//enable the SPI interrupt and the interrupt handler will kick in, handling
|
|
//any transactions that are queued.
|
|
spi_ll_enable_int(hw);
|
|
spi_ll_set_int_stat(hw);
|
|
spi_ll_set_mosi_delay(hw, 0, 0);
|
|
}
|
|
|
|
void spi_hal_deinit(spi_hal_context_t *hal)
|
|
{
|
|
spi_dev_t *hw = hal->hw;
|
|
if (hw) {
|
|
spi_ll_disable_int(hw);
|
|
spi_ll_clear_int_stat(hw);
|
|
}
|
|
}
|
|
|
|
esp_err_t spi_hal_cal_clock_conf(const spi_hal_timing_param_t *timing_param, int *out_freq, spi_hal_timing_conf_t *timing_conf)
|
|
{
|
|
spi_hal_timing_conf_t temp_conf;
|
|
|
|
int eff_clk_n = spi_ll_master_cal_clock(SPI_LL_PERIPH_CLK_FREQ, timing_param->clock_speed_hz, timing_param->duty_cycle, &temp_conf.clock_reg);
|
|
|
|
//When the speed is too fast, we may need to use dummy cycles to compensate the reading.
|
|
//But these don't work for full-duplex connections.
|
|
spi_hal_cal_timing(eff_clk_n, timing_param->use_gpio, timing_param->input_delay_ns, &temp_conf.timing_dummy, &temp_conf.timing_miso_delay);
|
|
|
|
#ifdef CONFIG_IDF_TARGET_ESP32
|
|
const int freq_limit = spi_hal_get_freq_limit(timing_param->use_gpio, timing_param->input_delay_ns);
|
|
|
|
SPI_HAL_CHECK(timing_param->half_duplex || temp_conf.timing_dummy == 0 || timing_param->no_compensate,
|
|
"When work in full-duplex mode at frequency > %.1fMHz, device cannot read correct data.\n\
|
|
Try to use IOMUX pins to increase the frequency limit, or use the half duplex mode.\n\
|
|
Please note the SPI master can only work at divisors of 80MHz, and the driver always tries to find the closest frequency to your configuration.\n\
|
|
Specify ``SPI_DEVICE_NO_DUMMY`` to ignore this checking. Then you can output data at higher speed, or read data at your own risk.",
|
|
ESP_ERR_NOT_SUPPORTED, freq_limit / 1000. / 1000 );
|
|
#endif
|
|
|
|
if (timing_conf) {
|
|
*timing_conf = temp_conf;
|
|
}
|
|
if (out_freq) {
|
|
*out_freq = eff_clk_n;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
int spi_hal_master_cal_clock(int fapb, int hz, int duty_cycle)
|
|
{
|
|
return spi_ll_master_cal_clock(fapb, hz, duty_cycle, NULL);
|
|
}
|
|
|
|
void spi_hal_cal_timing(int eff_clk, bool gpio_is_used, int input_delay_ns, int *dummy_n, int *miso_delay_n)
|
|
{
|
|
const int apbclk_kHz = APB_CLK_FREQ / 1000;
|
|
//how many apb clocks a period has
|
|
const int spiclk_apb_n = APB_CLK_FREQ / eff_clk;
|
|
const int gpio_delay_ns = gpio_is_used ? GPIO_MATRIX_DELAY_NS : 0;
|
|
|
|
//how many apb clocks the delay is, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
|
|
int delay_apb_n = (1 + input_delay_ns + gpio_delay_ns) * apbclk_kHz / 1000 / 1000;
|
|
if (delay_apb_n < 0) {
|
|
delay_apb_n = 0;
|
|
}
|
|
|
|
int dummy_required = delay_apb_n / spiclk_apb_n;
|
|
|
|
int miso_delay = 0;
|
|
if (dummy_required > 0) {
|
|
//due to the clock delay between master and slave, there's a range in which data is random
|
|
//give MISO a delay if needed to make sure we sample at the time MISO is stable
|
|
miso_delay = (dummy_required + 1) * spiclk_apb_n - delay_apb_n - 1;
|
|
} else {
|
|
//if the dummy is not required, maybe we should also delay half a SPI clock if the data comes too early
|
|
if (delay_apb_n * 4 <= spiclk_apb_n) {
|
|
miso_delay = -1;
|
|
}
|
|
}
|
|
*dummy_n = dummy_required;
|
|
*miso_delay_n = miso_delay;
|
|
HAL_LOGD(SPI_HAL_TAG, "eff: %d, limit: %dk(/%d), %d dummy, %d delay", eff_clk / 1000, apbclk_kHz / (delay_apb_n + 1), delay_apb_n, dummy_required, miso_delay);
|
|
}
|
|
|
|
int spi_hal_get_freq_limit(bool gpio_is_used, int input_delay_ns)
|
|
{
|
|
const int apbclk_kHz = APB_CLK_FREQ / 1000;
|
|
const int gpio_delay_ns = gpio_is_used ? GPIO_MATRIX_DELAY_NS : 0;
|
|
|
|
//how many apb clocks the delay is, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
|
|
int delay_apb_n = (1 + input_delay_ns + gpio_delay_ns) * apbclk_kHz / 1000 / 1000;
|
|
if (delay_apb_n < 0) {
|
|
delay_apb_n = 0;
|
|
}
|
|
|
|
return APB_CLK_FREQ / (delay_apb_n + 1);
|
|
}
|