kopia lustrzana https://github.com/espressif/esp-idf
408 wiersze
13 KiB
C
408 wiersze
13 KiB
C
// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <sys/param.h>
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/adc_hal.h"
|
|
#include "hal/adc_hal_conf.h"
|
|
#include "hal/assert.h"
|
|
#include "sdkconfig.h"
|
|
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
|
|
#include "soc/gdma_channel.h"
|
|
#include "soc/soc.h"
|
|
#include "esp_rom_sys.h"
|
|
|
|
typedef enum {
|
|
ADC_EVENT_ADC1_DONE = BIT(0),
|
|
ADC_EVENT_ADC2_DONE = BIT(1),
|
|
} adc_hal_event_t;
|
|
|
|
#endif
|
|
|
|
void adc_hal_init(void)
|
|
{
|
|
// Set internal FSM wait time, fixed value.
|
|
adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
|
|
SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
|
|
adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
|
|
adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
|
|
adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
|
|
adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
|
|
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
|
|
}
|
|
|
|
#if SOC_ADC_ARBITER_SUPPORTED
|
|
void adc_hal_arbiter_config(adc_arbiter_t *config)
|
|
{
|
|
adc_ll_set_arbiter_work_mode(config->mode);
|
|
adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
|
|
}
|
|
#endif
|
|
|
|
/*---------------------------------------------------------------
|
|
ADC calibration setting
|
|
---------------------------------------------------------------*/
|
|
#if SOC_ADC_HW_CALIBRATION_V1
|
|
void adc_hal_calibration_init(adc_ll_num_t adc_n)
|
|
{
|
|
adc_ll_calibration_init(adc_n);
|
|
}
|
|
|
|
static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
|
|
|
|
void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
|
|
{
|
|
if (param != s_previous_init_code[adc_n]) {
|
|
adc_ll_set_calibration_param(adc_n, param);
|
|
s_previous_init_code[adc_n] = param;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32S2
|
|
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
|
|
{
|
|
adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
|
|
|
|
/* Enable/disable internal connect GND (for calibration). */
|
|
if (internal_gnd) {
|
|
adc_ll_rtc_disable_channel(adc_n);
|
|
adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
|
|
} else {
|
|
adc_ll_rtc_enable_channel(adc_n, channel);
|
|
adc_ll_set_atten(adc_n, channel, atten);
|
|
}
|
|
}
|
|
|
|
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
|
|
{
|
|
adc_ll_rtc_start_convert(adc_n, channel);
|
|
while (adc_ll_rtc_convert_is_done(adc_n) != true);
|
|
return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
|
|
}
|
|
|
|
#elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
|
|
static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
|
|
{
|
|
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
|
|
/* Enable/disable internal connect GND (for calibration). */
|
|
if (internal_gnd) {
|
|
const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1) ? 0xF : 0x1;
|
|
adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
|
|
} else {
|
|
adc_ll_onetime_set_channel(adc_n, channel);
|
|
}
|
|
adc_ll_onetime_set_atten(atten);
|
|
adc_ll_onetime_sample_enable(adc_n, true);
|
|
}
|
|
|
|
static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
|
|
{
|
|
adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
|
|
adc_ll_onetime_start(false);
|
|
esp_rom_delay_us(5);
|
|
adc_ll_onetime_start(true);
|
|
|
|
while (!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
|
|
|
|
uint32_t read_val = -1;
|
|
if (adc_n == ADC_NUM_1) {
|
|
read_val = adc_ll_adc1_read();
|
|
} else if (adc_n == ADC_NUM_2) {
|
|
read_val = adc_ll_adc2_read();
|
|
if (adc_ll_analysis_raw_data(adc_n, read_val)) {
|
|
return -1;
|
|
}
|
|
}
|
|
return read_val;
|
|
}
|
|
#endif //CONFIG_IDF_TARGET_*
|
|
|
|
#define ADC_HAL_CAL_TIMES (10)
|
|
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
|
|
|
|
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
|
|
{
|
|
if (adc_n == ADC_NUM_2) {
|
|
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
|
adc_hal_arbiter_config(&config);
|
|
}
|
|
|
|
cal_setup(adc_n, channel, atten, internal_gnd);
|
|
|
|
adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
|
|
|
|
uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
|
|
uint32_t code_sum = 0;
|
|
uint32_t code_h = 0;
|
|
uint32_t code_l = 0;
|
|
uint32_t chk_code = 0;
|
|
|
|
for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
|
|
code_h = ADC_HAL_CAL_OFFSET_RANGE;
|
|
code_l = 0;
|
|
chk_code = (code_h + code_l) / 2;
|
|
adc_ll_set_calibration_param(adc_n, chk_code);
|
|
uint32_t self_cal = read_cal_channel(adc_n, channel);
|
|
while (code_h - code_l > 1) {
|
|
if (self_cal == 0) {
|
|
code_h = chk_code;
|
|
} else {
|
|
code_l = chk_code;
|
|
}
|
|
chk_code = (code_h + code_l) / 2;
|
|
adc_ll_set_calibration_param(adc_n, chk_code);
|
|
self_cal = read_cal_channel(adc_n, channel);
|
|
if ((code_h - code_l == 1)) {
|
|
chk_code += 1;
|
|
adc_ll_set_calibration_param(adc_n, chk_code);
|
|
self_cal = read_cal_channel(adc_n, channel);
|
|
}
|
|
}
|
|
code_list[rpt] = chk_code;
|
|
code_sum += chk_code;
|
|
}
|
|
|
|
code_l = code_list[0];
|
|
code_h = code_list[0];
|
|
for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
|
|
code_l = MIN(code_l, code_list[i]);
|
|
code_h = MAX(code_h, code_list[i]);
|
|
}
|
|
|
|
chk_code = code_h + code_l;
|
|
uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
|
|
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
|
|
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
|
|
|
|
adc_ll_calibration_finish(adc_n);
|
|
return ret;
|
|
}
|
|
#endif //SOC_ADC_HW_CALIBRATION_V1
|
|
|
|
#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
|
|
//This feature is currently supported on ESP32C3, will be supported on other chips soon
|
|
/*---------------------------------------------------------------
|
|
DMA setting
|
|
---------------------------------------------------------------*/
|
|
void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
|
|
{
|
|
hal->dev = &GDMA;
|
|
hal->desc_dummy_head.next = hal->rx_desc;
|
|
hal->desc_max_num = config->desc_max_num;
|
|
hal->dma_chan = config->dma_chan;
|
|
hal->eof_num = config->eof_num;
|
|
}
|
|
|
|
void adc_hal_digi_init(adc_hal_context_t *hal)
|
|
{
|
|
gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX);
|
|
gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true);
|
|
adc_ll_digi_dma_set_eof_num(hal->eof_num);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
|
|
}
|
|
|
|
void adc_hal_fifo_reset(adc_hal_context_t *hal)
|
|
{
|
|
adc_ll_digi_reset();
|
|
gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
|
|
}
|
|
|
|
static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
|
|
{
|
|
HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
|
|
HAL_ASSERT((size % 4) == 0);
|
|
uint32_t n = 0;
|
|
|
|
while (num--) {
|
|
desc[n].dw0.size = size;
|
|
desc[n].dw0.suc_eof = 0;
|
|
desc[n].dw0.owner = 1;
|
|
desc[n].buffer = data_buf;
|
|
desc[n].next = &desc[n + 1];
|
|
data_buf += size;
|
|
n++;
|
|
}
|
|
desc[n - 1].next = NULL;
|
|
}
|
|
|
|
void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
|
|
{
|
|
//reset the current descriptor address
|
|
hal->cur_desc_ptr = &hal->desc_dummy_head;
|
|
adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
|
|
gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc);
|
|
gdma_ll_rx_start(hal->dev, hal->dma_chan);
|
|
}
|
|
|
|
void adc_hal_digi_start(adc_hal_context_t *hal)
|
|
{
|
|
//the ADC data will be sent to the DMA
|
|
adc_ll_digi_dma_enable();
|
|
//enable sar adc timer
|
|
adc_ll_digi_trigger_enable();
|
|
}
|
|
|
|
adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
|
|
{
|
|
HAL_ASSERT(hal->cur_desc_ptr);
|
|
if (!hal->cur_desc_ptr->next) {
|
|
return ADC_HAL_DMA_DESC_NULL;
|
|
}
|
|
if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
|
|
return ADC_HAL_DMA_DESC_WAITING;
|
|
}
|
|
|
|
hal->cur_desc_ptr = hal->cur_desc_ptr->next;
|
|
*cur_desc = hal->cur_desc_ptr;
|
|
|
|
return ADC_HAL_DMA_DESC_VALID;
|
|
}
|
|
|
|
void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal)
|
|
{
|
|
gdma_ll_rx_stop(hal->dev, hal->dma_chan);
|
|
}
|
|
|
|
void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
|
|
{
|
|
gdma_ll_rx_clear_interrupt_status(hal->dev, hal->dma_chan, mask);
|
|
}
|
|
|
|
void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
|
|
{
|
|
gdma_ll_rx_enable_interrupt(hal->dev, hal->dma_chan, mask, false);
|
|
}
|
|
|
|
void adc_hal_digi_stop(adc_hal_context_t *hal)
|
|
{
|
|
//Set to 0: the ADC data won't be sent to the DMA
|
|
adc_ll_digi_dma_disable();
|
|
//disable sar adc timer
|
|
adc_ll_digi_trigger_disable();
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
Single Read
|
|
---------------------------------------------------------------*/
|
|
|
|
//--------------------INTR-------------------------------//
|
|
static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
|
|
{
|
|
adc_ll_intr_t intr_mask = 0;
|
|
if (event & ADC_EVENT_ADC1_DONE) {
|
|
intr_mask |= ADC_LL_INTR_ADC1_DONE;
|
|
}
|
|
if (event & ADC_EVENT_ADC2_DONE) {
|
|
intr_mask |= ADC_LL_INTR_ADC2_DONE;
|
|
}
|
|
return intr_mask;
|
|
}
|
|
|
|
static void adc_hal_intr_clear(adc_hal_event_t event)
|
|
{
|
|
adc_ll_intr_clear(get_event_intr(event));
|
|
}
|
|
|
|
static bool adc_hal_intr_get_raw(adc_hal_event_t event)
|
|
{
|
|
return adc_ll_intr_get_raw(get_event_intr(event));
|
|
}
|
|
|
|
//--------------------Single Read-------------------------------//
|
|
static void adc_hal_onetime_start(void)
|
|
{
|
|
/**
|
|
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
|
|
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
|
|
* clock cycle.
|
|
*
|
|
* This limitation will be removed in hardware future versions.
|
|
*
|
|
*/
|
|
uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
|
|
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
|
|
uint32_t delay = (1000 * 1000) / digi_clk + 1;
|
|
//3 ADC digital controller clock cycle
|
|
delay = delay * 3;
|
|
//This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
|
|
if (digi_clk >= APB_CLK_FREQ / 8) {
|
|
delay = 0;
|
|
}
|
|
|
|
adc_ll_onetime_start(false);
|
|
esp_rom_delay_us(delay);
|
|
adc_ll_onetime_start(true);
|
|
|
|
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
|
|
}
|
|
|
|
static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
|
|
{
|
|
if (adc_n == ADC_NUM_1) {
|
|
*out_raw = adc_ll_adc1_read();
|
|
} else if (adc_n == ADC_NUM_2) {
|
|
*out_raw = adc_ll_adc2_read();
|
|
if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
|
|
{
|
|
esp_err_t ret;
|
|
adc_hal_event_t event;
|
|
|
|
if (adc_n == ADC_NUM_1) {
|
|
event = ADC_EVENT_ADC1_DONE;
|
|
} else {
|
|
event = ADC_EVENT_ADC2_DONE;
|
|
}
|
|
|
|
adc_hal_intr_clear(event);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_1, false);
|
|
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
|
|
adc_ll_onetime_sample_enable(adc_n, true);
|
|
adc_ll_onetime_set_channel(adc_n, channel);
|
|
|
|
//Trigger single read.
|
|
adc_hal_onetime_start();
|
|
while (!adc_hal_intr_get_raw(event));
|
|
ret = adc_hal_single_read(adc_n, out_raw);
|
|
//HW workaround: when enabling periph clock, this should be false
|
|
adc_ll_onetime_sample_enable(adc_n, false);
|
|
|
|
return ret;
|
|
}
|
|
#else // !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2
|
|
esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
|
|
{
|
|
adc_ll_rtc_enable_channel(adc_n, channel);
|
|
adc_ll_rtc_start_convert(adc_n, channel);
|
|
while (adc_ll_rtc_convert_is_done(adc_n) != true);
|
|
*out_raw = adc_ll_rtc_get_convert_value(adc_n);
|
|
|
|
if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
#endif //#if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32C3
|