esp-idf/components/esp_driver_rmt/src/rmt_encoder.c

522 wiersze
20 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include "sdkconfig.h"
#if CONFIG_RMT_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "esp_log.h"
#include "esp_check.h"
#include "driver/rmt_encoder.h"
#include "rmt_private.h"
#include "hal/hal_utils.h"
static const char *TAG = "rmt";
typedef struct rmt_bytes_encoder_t {
rmt_encoder_t base; // encoder base class
size_t last_bit_index; // index of the encoding bit position in the encoding byte
size_t last_byte_index; // index of the encoding byte in the primary stream
rmt_symbol_word_t bit0; // bit zero representing
rmt_symbol_word_t bit1; // bit one representing
struct {
uint32_t msb_first: 1; // encode MSB firstly
} flags;
} rmt_bytes_encoder_t;
typedef struct rmt_copy_encoder_t {
rmt_encoder_t base; // encoder base class
size_t last_symbol_index; // index of symbol position in the primary stream
} rmt_copy_encoder_t;
typedef struct rmt_simple_encoder_t {
rmt_encoder_t base; // encoder base class
size_t last_symbol_index; // index of symbol position in the primary stream
rmt_encode_simple_cb_t callback; //callback to call to encode
void *arg; // opaque callback argument
rmt_symbol_word_t *ovf_buf; //overflow buffer
size_t ovf_buf_size; //size, in elements, of overflow buffer
size_t ovf_buf_fill_len; //how much actual info the overflow buffer has
size_t ovf_buf_parsed_pos; //up to where we moved info from the ovf buf to the rmt
bool callback_done; //true if we can't call the callback for more data anymore.
} rmt_simple_encoder_t;
static esp_err_t rmt_bytes_encoder_reset(rmt_encoder_t *encoder)
{
rmt_bytes_encoder_t *bytes_encoder = __containerof(encoder, rmt_bytes_encoder_t, base);
// reset index to zero
bytes_encoder->last_bit_index = 0;
bytes_encoder->last_byte_index = 0;
return ESP_OK;
}
static size_t IRAM_ATTR rmt_encode_bytes(rmt_encoder_t *encoder, rmt_channel_handle_t channel,
const void *primary_data, size_t data_size, rmt_encode_state_t *ret_state)
{
rmt_bytes_encoder_t *bytes_encoder = __containerof(encoder, rmt_bytes_encoder_t, base);
rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
const uint8_t *raw_data = (const uint8_t *)primary_data;
rmt_encode_state_t state = RMT_ENCODING_RESET;
rmt_dma_descriptor_t *desc0 = NULL;
rmt_dma_descriptor_t *desc1 = NULL;
size_t byte_index = bytes_encoder->last_byte_index;
size_t bit_index = bytes_encoder->last_bit_index;
// how many symbols will be generated by the encoder
size_t mem_want = (data_size - byte_index - 1) * 8 + (8 - bit_index);
// how many symbols we can save for this round
size_t mem_have = tx_chan->mem_end - tx_chan->mem_off;
// where to put the encoded symbols? DMA buffer or RMT HW memory
rmt_symbol_word_t *mem_to_nc = NULL;
if (channel->dma_chan) {
mem_to_nc = tx_chan->dma_mem_base_nc;
} else {
mem_to_nc = channel->hw_mem_base;
}
// how many symbols will be encoded in this round
size_t encode_len = MIN(mem_want, mem_have);
bool encoding_truncated = mem_have < mem_want;
bool encoding_space_free = mem_have > mem_want;
if (channel->dma_chan) {
// mark the start descriptor
if (tx_chan->mem_off < tx_chan->ping_pong_symbols) {
desc0 = &tx_chan->dma_nodes_nc[0];
} else {
desc0 = &tx_chan->dma_nodes_nc[1];
}
}
size_t len = encode_len;
while (len > 0) {
// start from last time truncated encoding
uint8_t cur_byte = raw_data[byte_index];
// bit-wise reverse
if (bytes_encoder->flags.msb_first) {
cur_byte = hal_utils_bitwise_reverse8(cur_byte);
}
while ((len > 0) && (bit_index < 8)) {
if (cur_byte & (1 << bit_index)) {
mem_to_nc[tx_chan->mem_off++] = bytes_encoder->bit1;
} else {
mem_to_nc[tx_chan->mem_off++] = bytes_encoder->bit0;
}
len--;
bit_index++;
}
if (bit_index >= 8) {
byte_index++;
bit_index = 0;
}
}
if (channel->dma_chan) {
// mark the end descriptor
if (tx_chan->mem_off < tx_chan->ping_pong_symbols) {
desc1 = &tx_chan->dma_nodes_nc[0];
} else {
desc1 = &tx_chan->dma_nodes_nc[1];
}
// cross line, means desc0 has prepared with sufficient data buffer
if (desc0 != desc1) {
desc0->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t);
desc0->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
}
}
if (encoding_truncated) {
// this encoding has not finished yet, save the truncated position
bytes_encoder->last_bit_index = bit_index;
bytes_encoder->last_byte_index = byte_index;
} else {
// reset internal index if encoding session has finished
bytes_encoder->last_bit_index = 0;
bytes_encoder->last_byte_index = 0;
state |= RMT_ENCODING_COMPLETE;
}
if (!encoding_space_free) {
// no more free memory, the caller should yield
state |= RMT_ENCODING_MEM_FULL;
}
// reset offset pointer when exceeds maximum range
if (tx_chan->mem_off >= tx_chan->ping_pong_symbols * 2) {
if (channel->dma_chan) {
desc1->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t);
desc1->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
}
tx_chan->mem_off = 0;
}
*ret_state = state;
return encode_len;
}
static esp_err_t rmt_copy_encoder_reset(rmt_encoder_t *encoder)
{
rmt_copy_encoder_t *copy_encoder = __containerof(encoder, rmt_copy_encoder_t, base);
copy_encoder->last_symbol_index = 0;
return ESP_OK;
}
static size_t IRAM_ATTR rmt_encode_copy(rmt_encoder_t *encoder, rmt_channel_handle_t channel,
const void *primary_data, size_t data_size, rmt_encode_state_t *ret_state)
{
rmt_copy_encoder_t *copy_encoder = __containerof(encoder, rmt_copy_encoder_t, base);
rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
rmt_symbol_word_t *symbols = (rmt_symbol_word_t *)primary_data;
rmt_encode_state_t state = RMT_ENCODING_RESET;
rmt_dma_descriptor_t *desc0 = NULL;
rmt_dma_descriptor_t *desc1 = NULL;
size_t symbol_index = copy_encoder->last_symbol_index;
// how many symbols will be copied by the encoder
size_t mem_want = (data_size / 4 - symbol_index);
// how many symbols we can save for this round
size_t mem_have = tx_chan->mem_end - tx_chan->mem_off;
// where to put the encoded symbols? DMA buffer or RMT HW memory
rmt_symbol_word_t *mem_to_nc = NULL;
if (channel->dma_chan) {
mem_to_nc = tx_chan->dma_mem_base_nc;
} else {
mem_to_nc = channel->hw_mem_base;
}
// how many symbols will be encoded in this round
size_t encode_len = MIN(mem_want, mem_have);
bool encoding_truncated = mem_have < mem_want;
bool encoding_space_free = mem_have > mem_want;
if (channel->dma_chan) {
// mark the start descriptor
if (tx_chan->mem_off < tx_chan->ping_pong_symbols) {
desc0 = &tx_chan->dma_nodes_nc[0];
} else {
desc0 = &tx_chan->dma_nodes_nc[1];
}
}
size_t len = encode_len;
while (len > 0) {
mem_to_nc[tx_chan->mem_off++] = symbols[symbol_index++];
len--;
}
if (channel->dma_chan) {
// mark the end descriptor
if (tx_chan->mem_off < tx_chan->ping_pong_symbols) {
desc1 = &tx_chan->dma_nodes_nc[0];
} else {
desc1 = &tx_chan->dma_nodes_nc[1];
}
// cross line, means desc0 has prepared with sufficient data buffer
if (desc0 != desc1) {
desc0->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t);
desc0->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
}
}
if (encoding_truncated) {
// this encoding has not finished yet, save the truncated position
copy_encoder->last_symbol_index = symbol_index;
} else {
// reset internal index if encoding session has finished
copy_encoder->last_symbol_index = 0;
state |= RMT_ENCODING_COMPLETE;
}
if (!encoding_space_free) {
// no more free memory, the caller should yield
state |= RMT_ENCODING_MEM_FULL;
}
// reset offset pointer when exceeds maximum range
if (tx_chan->mem_off >= tx_chan->ping_pong_symbols * 2) {
if (channel->dma_chan) {
desc1->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t);
desc1->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
}
tx_chan->mem_off = 0;
}
*ret_state = state;
return encode_len;
}
static size_t IRAM_ATTR rmt_encode_simple(rmt_encoder_t *encoder, rmt_channel_handle_t channel,
const void *data, size_t data_size, rmt_encode_state_t *ret_state)
{
rmt_simple_encoder_t *simple_encoder = __containerof(encoder, rmt_simple_encoder_t, base);
rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
rmt_encode_state_t state = RMT_ENCODING_RESET;
rmt_dma_descriptor_t *desc0 = NULL;
rmt_dma_descriptor_t *desc1 = NULL;
// where to put the encoded symbols? DMA buffer or RMT HW memory
rmt_symbol_word_t *mem_to_nc = NULL;
if (channel->dma_chan) {
mem_to_nc = tx_chan->dma_mem_base_nc;
} else {
mem_to_nc = channel->hw_mem_base;
}
if (channel->dma_chan) {
// mark the start descriptor
if (tx_chan->mem_off < tx_chan->ping_pong_symbols) {
desc0 = &tx_chan->dma_nodes_nc[0];
} else {
desc0 = &tx_chan->dma_nodes_nc[1];
}
}
// While we're not done, we need to use the callback to fill the RMT memory until it is
// exactly entirely full. We cannot do that if the RMT memory still has N free spaces
// but the encoder callback needs more than N spaces to properly encode a symbol.
// In order to work around that, if we detect that situation we let the encoder
// encode into an overflow buffer, then we use the contents of that buffer to fill
// those last N spaces. On the next call, we will first output the rest of the
// overflow buffer before again using the callback to continue filling the RMT
// buffer.
// Note the next code is in a while loop to properly handle 'unsure' callbacks that
// e.g. return 0 with a free buffer size of M, but then return less than M symbols
// when then called with a larger buffer.
size_t encode_len = 0; //total amount of symbols written to rmt memory
bool is_done = false;
while (tx_chan->mem_off < tx_chan->mem_end) {
if (simple_encoder->ovf_buf_parsed_pos < simple_encoder->ovf_buf_fill_len) {
// Overflow buffer has data from the previous encoding call. Copy one entry
// from that.
mem_to_nc[tx_chan->mem_off++] = simple_encoder->ovf_buf[simple_encoder->ovf_buf_parsed_pos++];
encode_len++;
} else {
// Overflow buffer is empty, so we don't need to empty that first.
if (simple_encoder->callback_done) {
// We cannot call the callback anymore and the overflow buffer
// is empty, so we're done with the transaction.
is_done = true;
break;
}
// Try to have the callback write the data directly into RMT memory.
size_t enc_size = simple_encoder->callback(data, data_size,
simple_encoder->last_symbol_index,
tx_chan->mem_end - tx_chan->mem_off,
&mem_to_nc[tx_chan->mem_off],
&is_done, simple_encoder->arg);
encode_len += enc_size;
tx_chan->mem_off += enc_size;
simple_encoder->last_symbol_index += enc_size;
if (is_done) {
break; // we're done, no more data to write to RMT memory.
}
if (enc_size == 0) {
// The encoder does not have enough space in RMT memory to encode its thing,
// but the RMT memory is not filled out entirely. Encode into the overflow
// buffer so the next iterations of the loop can fill out the RMT buffer
// from that.
enc_size = simple_encoder->callback(data, data_size,
simple_encoder->last_symbol_index,
simple_encoder->ovf_buf_size,
simple_encoder->ovf_buf,
&is_done, simple_encoder->arg);
simple_encoder->last_symbol_index += enc_size;
//Note we do *not* update encode_len here as the data isn't going to the RMT yet.
simple_encoder->ovf_buf_fill_len = enc_size;
simple_encoder->ovf_buf_parsed_pos = 0;
if (is_done) {
// If the encoder is done, we cannot call the callback anymore, but we still
// need to handle any data in the overflow buffer.
simple_encoder->callback_done = true;
} else {
if (enc_size == 0) {
//According to the callback docs, this is illegal.
//Report this. EARLY_LOGE as we're running from an ISR.
ESP_EARLY_LOGE(TAG, "rmt_encoder_simple: encoder callback returned 0 when fed a buffer of config::min_chunk_size!");
//Then abort the transaction.
is_done = true;
break;
}
}
}
}
}
if (channel->dma_chan) {
// mark the end descriptor
if (tx_chan->mem_off < tx_chan->ping_pong_symbols) {
desc1 = &tx_chan->dma_nodes_nc[0];
} else {
desc1 = &tx_chan->dma_nodes_nc[1];
}
// cross line, means desc0 has prepared with sufficient data buffer
if (desc0 != desc1) {
desc0->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t);
desc0->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
}
}
if (is_done) {
// reset internal index if encoding session has finished
simple_encoder->last_symbol_index = 0;
state |= RMT_ENCODING_COMPLETE;
} else {
// no more free memory, the caller should yield
state |= RMT_ENCODING_MEM_FULL;
}
// reset offset pointer when exceeds maximum range
if (tx_chan->mem_off >= tx_chan->ping_pong_symbols * 2) {
if (channel->dma_chan) {
desc1->dw0.length = tx_chan->ping_pong_symbols * sizeof(rmt_symbol_word_t);
desc1->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
}
tx_chan->mem_off = 0;
}
*ret_state = state;
return encode_len;
}
static esp_err_t rmt_del_bytes_encoder(rmt_encoder_t *encoder)
{
rmt_bytes_encoder_t *bytes_encoder = __containerof(encoder, rmt_bytes_encoder_t, base);
free(bytes_encoder);
return ESP_OK;
}
static esp_err_t rmt_del_copy_encoder(rmt_encoder_t *encoder)
{
rmt_copy_encoder_t *copy_encoder = __containerof(encoder, rmt_copy_encoder_t, base);
free(copy_encoder);
return ESP_OK;
}
static esp_err_t rmt_simple_encoder_reset(rmt_encoder_t *encoder)
{
rmt_simple_encoder_t *simple_encoder = __containerof(encoder, rmt_simple_encoder_t, base);
simple_encoder->last_symbol_index = 0;
simple_encoder->ovf_buf_fill_len = 0;
simple_encoder->ovf_buf_parsed_pos = 0;
simple_encoder->callback_done = false;
return ESP_OK;
}
static esp_err_t rmt_del_simple_encoder(rmt_encoder_t *encoder)
{
rmt_simple_encoder_t *simple_encoder = __containerof(encoder, rmt_simple_encoder_t, base);
if (simple_encoder->ovf_buf) {
free(simple_encoder->ovf_buf);
}
free(simple_encoder);
return ESP_OK;
}
esp_err_t rmt_new_bytes_encoder(const rmt_bytes_encoder_config_t *config, rmt_encoder_handle_t *ret_encoder)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
rmt_bytes_encoder_t *encoder = rmt_alloc_encoder_mem(sizeof(rmt_bytes_encoder_t));
ESP_GOTO_ON_FALSE(encoder, ESP_ERR_NO_MEM, err, TAG, "no mem for bytes encoder");
encoder->base.encode = rmt_encode_bytes;
encoder->base.del = rmt_del_bytes_encoder;
encoder->base.reset = rmt_bytes_encoder_reset;
encoder->bit0 = config->bit0;
encoder->bit1 = config->bit1;
encoder->flags.msb_first = config->flags.msb_first;
// return general encoder handle
*ret_encoder = &encoder->base;
ESP_LOGD(TAG, "new bytes encoder @%p", encoder);
err:
return ret;
}
esp_err_t rmt_bytes_encoder_update_config(rmt_encoder_handle_t bytes_encoder, const rmt_bytes_encoder_config_t *config)
{
ESP_RETURN_ON_FALSE(bytes_encoder && config, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
rmt_bytes_encoder_t *encoder = __containerof(bytes_encoder, rmt_bytes_encoder_t, base);
encoder->bit0 = config->bit0;
encoder->bit1 = config->bit1;
encoder->flags.msb_first = config->flags.msb_first;
return ESP_OK;
}
esp_err_t rmt_new_copy_encoder(const rmt_copy_encoder_config_t *config, rmt_encoder_handle_t *ret_encoder)
{
esp_err_t ret = ESP_OK;
ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
rmt_copy_encoder_t *encoder = rmt_alloc_encoder_mem(sizeof(rmt_copy_encoder_t));
ESP_GOTO_ON_FALSE(encoder, ESP_ERR_NO_MEM, err, TAG, "no mem for copy encoder");
encoder->base.encode = rmt_encode_copy;
encoder->base.del = rmt_del_copy_encoder;
encoder->base.reset = rmt_copy_encoder_reset;
// return general encoder handle
*ret_encoder = &encoder->base;
ESP_LOGD(TAG, "new copy encoder @%p", encoder);
err:
return ret;
}
esp_err_t rmt_new_simple_encoder(const rmt_simple_encoder_config_t *config, rmt_encoder_handle_t *ret_encoder)
{
esp_err_t ret = ESP_OK;
rmt_simple_encoder_t *encoder = NULL;
ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
encoder = rmt_alloc_encoder_mem(sizeof(rmt_simple_encoder_t));
ESP_GOTO_ON_FALSE(encoder, ESP_ERR_NO_MEM, err, TAG, "no mem for simple encoder");
encoder->base.encode = rmt_encode_simple;
encoder->base.del = rmt_del_simple_encoder;
encoder->base.reset = rmt_simple_encoder_reset;
encoder->callback = config->callback;
encoder->arg = config->arg;
size_t min_chunk_size = config->min_chunk_size;
if (min_chunk_size == 0) {
min_chunk_size = 64;
}
encoder->ovf_buf = rmt_alloc_encoder_mem(min_chunk_size * sizeof(rmt_symbol_word_t));
ESP_GOTO_ON_FALSE(encoder->ovf_buf, ESP_ERR_NO_MEM, err, TAG, "no mem for simple encoder overflow buffer");
encoder->ovf_buf_size = min_chunk_size;
encoder->ovf_buf_fill_len = 0;
encoder->ovf_buf_parsed_pos = 0;
// return general encoder handle
*ret_encoder = &encoder->base;
ESP_LOGD(TAG, "new simple encoder @%p", encoder);
return ret;
err:
if (encoder) {
free(encoder);
}
return ret;
}
esp_err_t rmt_del_encoder(rmt_encoder_handle_t encoder)
{
ESP_RETURN_ON_FALSE(encoder, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
return encoder->del(encoder);
}
esp_err_t rmt_encoder_reset(rmt_encoder_handle_t encoder)
{
ESP_RETURN_ON_FALSE(encoder, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
return encoder->reset(encoder);
}
void *rmt_alloc_encoder_mem(size_t size)
{
return heap_caps_calloc(1, size, RMT_MEM_ALLOC_CAPS);
}