esp-idf/components/esp_eth/test_apps/main/esp_eth_test_l2.c

514 wiersze
23 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <string.h>
#include <inttypes.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_eth_test_common.h"
#include "arpa/inet.h" // for ntohs, etc.
#include "esp_log.h"
#define TEST_ETH_TYPE 0x3300
#define TEST_CTRL_ETH_TYPE (TEST_ETH_TYPE + 1)
#define WAIT_FOR_CONN_TMO_MS (5000)
#define WAIT_AFTER_CONN_MS (2500)
#define WAIT_AFTER_CONN_TMO_MS (20000)
#define ETH_BROADCAST_RECV_BIT BIT(0)
#define ETH_MULTICAST_RECV_BIT BIT(1)
#define ETH_UNICAST_RECV_BIT BIT(2)
#define ETH_POKE_RESP_RECV_BIT BIT(3)
#define POKE_REQ (0xFA)
#define POKE_RESP (0xFB)
#define DUMMY_TRAFFIC (0xFF)
#define W5500_RX_MEM_SIZE (0x4000)
#define DM9051_RX_MEM_SIZE (0x4000)
#define KSZ8851SNL_RX_MEM_SIZE (0x3000)
static const char *TAG = "esp32_eth_test_l2";
typedef struct
{
EventGroupHandle_t eth_event_group;
uint8_t dst_mac_addr[ETH_ADDR_LEN];
int unicast_rx_cnt;
int multicast_rx_cnt;
int brdcast_rx_cnt;
bool check_rx_data;
} recv_info_t;
static recv_info_t s_recv_info;
static esp_err_t l2_packet_txrx_test_cb(esp_eth_handle_t hdl, uint8_t *buffer, uint32_t length, void *priv) {
recv_info_t *recv_info = (recv_info_t*)priv;
EventGroupHandle_t eth_event_group = recv_info->eth_event_group;
emac_frame_t *pkt = (emac_frame_t *)buffer;
// check header
if (pkt->proto == ntohs(TEST_ETH_TYPE)) { // data packet
uint8_t local_mac_addr[ETH_ADDR_LEN];
esp_eth_ioctl(hdl, ETH_CMD_G_MAC_ADDR, local_mac_addr);
// check data content
if (recv_info->check_rx_data) {
if (length == 1024) {
for (int i = 0; i < (length - ETH_HEADER_LEN); ++i) {
if (pkt->data[i] != (i & 0xff)) {
printf("payload mismatch\n");
free(buffer);
return ESP_OK;
}
}
}
}
if (memcmp(pkt->dest, "\xff\xff\xff\xff\xff\xff", ETH_ADDR_LEN) == 0) {
recv_info->brdcast_rx_cnt++;
xEventGroupSetBits(eth_event_group, ETH_BROADCAST_RECV_BIT);
} else if (pkt->dest[0] & 0x1) {
recv_info->multicast_rx_cnt++;
xEventGroupSetBits(eth_event_group, ETH_MULTICAST_RECV_BIT);
} else if (memcmp(pkt->dest, local_mac_addr, ETH_ADDR_LEN) == 0) {
recv_info->unicast_rx_cnt++;
xEventGroupSetBits(eth_event_group, ETH_UNICAST_RECV_BIT);
}
} else if (ntohs(pkt->proto) == TEST_CTRL_ETH_TYPE) { // control packet
if (pkt->data[0] == POKE_RESP) {
memcpy(recv_info->dst_mac_addr, pkt->src, ETH_ADDR_LEN); // test PC source MAC addr is destination for us
printf("Poke response received\n");
xEventGroupSetBits(eth_event_group, ETH_POKE_RESP_RECV_BIT);
}
}
free(buffer);
return ESP_OK;
}
/**
* @brief The function sends a "POKE" request message over the Ethernet and waits until the test script sends a reply.
* Multiple "POKE" attempts are issued when timeout for the reply expires.
* This function is used to drive the test flow and to ensure that data path between the test points
* has been established. I.e. if DUT is connected in network with a switch, even if link is indicated up,
* it may take some time the switch starts forwarding the associated port (e.g. it runs RSTP at first).
*/
void poke_and_wait(esp_eth_handle_t eth_handle, void *data, uint16_t size, uint8_t *dst_mac_addr, EventGroupHandle_t eth_event_group)
{
// create a control frame to control test flow between the UT and the Python test script
emac_frame_t *ctrl_pkt = calloc(1, 60);
ctrl_pkt->proto = htons(TEST_CTRL_ETH_TYPE);
memset(ctrl_pkt->dest, 0xff, ETH_ADDR_LEN); // broadcast addr
esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, ctrl_pkt->src);
ctrl_pkt->data[0] = POKE_REQ;
if (data != NULL && size > 0) {
memcpy(&ctrl_pkt->data[1], data, size);
}
uint32_t tmo;
uint32_t i;
for(tmo = 0, i = 1; tmo < WAIT_AFTER_CONN_TMO_MS; tmo += WAIT_AFTER_CONN_MS, i++) {
printf("Poke attempt #%" PRIu32 "\n", i);
TEST_ESP_OK(esp_eth_transmit(eth_handle, ctrl_pkt, 60));
EventBits_t bits = xEventGroupWaitBits(eth_event_group, ETH_POKE_RESP_RECV_BIT,
true, true, pdMS_TO_TICKS(WAIT_AFTER_CONN_MS));
if ((bits & ETH_POKE_RESP_RECV_BIT) == ETH_POKE_RESP_RECV_BIT) {
if (dst_mac_addr != NULL) {
memcpy(dst_mac_addr, s_recv_info.dst_mac_addr, ETH_ADDR_LEN);
}
break;
}
}
TEST_ASSERT(tmo < WAIT_AFTER_CONN_TMO_MS);
free(ctrl_pkt);
}
TEST_CASE("ethernet broadcast transmit", "[ethernet_l2]")
{
esp_eth_mac_t *mac = mac_init(NULL, NULL);
TEST_ASSERT_NOT_NULL(mac);
esp_eth_phy_t *phy = phy_init(NULL);
TEST_ASSERT_NOT_NULL(phy);
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration
esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver
TEST_ESP_OK(esp_eth_driver_install(&config, &eth_handle)); // install driver
TEST_ASSERT_NOT_NULL(eth_handle);
extra_eth_config(eth_handle);
TEST_ESP_OK(esp_event_loop_create_default());
EventGroupHandle_t eth_event_state_group = xEventGroupCreate();
TEST_ASSERT(eth_event_state_group != NULL);
TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, eth_event_state_group));
EventGroupHandle_t eth_event_rx_group = xEventGroupCreate();
TEST_ASSERT(eth_event_rx_group != NULL);
s_recv_info.eth_event_group = eth_event_rx_group;
s_recv_info.check_rx_data = false;
s_recv_info.unicast_rx_cnt = 0;
s_recv_info.multicast_rx_cnt = 0;
s_recv_info.brdcast_rx_cnt = 0;
uint8_t local_mac_addr[ETH_ADDR_LEN] = {};
TEST_ESP_OK(mac->get_addr(mac, local_mac_addr));
// test app will parse the DUT MAC from this line of log output
printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2],
local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]);
TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &s_recv_info));
TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine
EventBits_t bits = 0;
bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(WAIT_FOR_CONN_TMO_MS));
TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT);
// if DUT is connected in network with switch: even if link is indicated up, it may take some time the switch
// starts switching the associated port (e.g. it runs RSTP at first)
poke_and_wait(eth_handle, NULL, 0, NULL, eth_event_rx_group);
emac_frame_t *pkt = malloc(1024);
pkt->proto = htons(TEST_ETH_TYPE);
TEST_ESP_OK(esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, pkt->src));
memset(pkt->dest, 0xff, ETH_ADDR_LEN); // broadcast addr
for (int i = 0; i < (1024 - ETH_HEADER_LEN); ++i){
pkt->data[i] = i & 0xff;
}
TEST_ESP_OK(esp_eth_transmit(eth_handle, pkt, 1024));
// give it some time to complete transmit
vTaskDelay(pdMS_TO_TICKS(500));
free(pkt);
TEST_ESP_OK(esp_eth_stop(eth_handle));
TEST_ESP_OK(esp_event_loop_delete_default());
TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle));
phy->del(phy);
mac->del(mac);
extra_cleanup();
vEventGroupDelete(eth_event_rx_group);
vEventGroupDelete(eth_event_state_group);
}
TEST_CASE("ethernet recv_pkt", "[ethernet_l2]")
{
esp_eth_mac_t *mac = mac_init(NULL, NULL);
TEST_ASSERT_NOT_NULL(mac);
esp_eth_phy_t *phy = phy_init(NULL);
TEST_ASSERT_NOT_NULL(phy);
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration
esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver
TEST_ESP_OK(esp_eth_driver_install(&config, &eth_handle)); // install driver
TEST_ASSERT_NOT_NULL(eth_handle);
extra_eth_config(eth_handle);
TEST_ESP_OK(esp_event_loop_create_default());
EventGroupHandle_t eth_event_state_group = xEventGroupCreate();
TEST_ASSERT(eth_event_state_group != NULL);
TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, eth_event_state_group));
EventGroupHandle_t eth_event_rx_group = xEventGroupCreate();
TEST_ASSERT(eth_event_rx_group != NULL);
s_recv_info.eth_event_group = eth_event_rx_group;
s_recv_info.check_rx_data = true;
s_recv_info.unicast_rx_cnt = 0;
s_recv_info.multicast_rx_cnt = 0;
s_recv_info.brdcast_rx_cnt = 0;
uint8_t local_mac_addr[ETH_ADDR_LEN] = {};
TEST_ESP_OK(mac->get_addr(mac, local_mac_addr));
// test app will parse the DUT MAC from this line of log output
printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2],
local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]);
TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &s_recv_info));
TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine
EventBits_t bits = 0;
bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(WAIT_FOR_CONN_TMO_MS));
TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT);
// if DUT is connected in network with switch: even if link is indicated up, it may take some time the switch
// starts switching the associated port (e.g. it runs RSTP at first)
poke_and_wait(eth_handle, NULL, 0, NULL, eth_event_rx_group);
bits = 0;
bits = xEventGroupWaitBits(eth_event_rx_group, ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT,
true, true, pdMS_TO_TICKS(5000));
printf("bits = 0x%" PRIu32 "\n", (uint32_t)bits & (ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT));
TEST_ASSERT((bits & (ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT)) ==
(ETH_BROADCAST_RECV_BIT | ETH_MULTICAST_RECV_BIT | ETH_UNICAST_RECV_BIT));
TEST_ESP_OK(esp_eth_stop(eth_handle));
TEST_ESP_OK(esp_event_loop_delete_default());
TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle));
phy->del(phy);
mac->del(mac);
extra_cleanup();
vEventGroupDelete(eth_event_state_group);
vEventGroupDelete(eth_event_rx_group);
}
TEST_CASE("ethernet start/stop stress test under heavy traffic", "[ethernet_l2]")
{
// *** SPI Ethernet modules deviation ***
// Rationale: The SPI bus is bottleneck when reading received frames from the module. The Rx Task would
// occupy all the resources under heavy Rx traffic and it would not be possible to access
// the Ethernet module to stop it. Therfore, the Rx task priority is set lower than "test" task
// to be able to be preempted.
#if CONFIG_TARGET_USE_SPI_ETHERNET
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG();
mac_config.rx_task_prio = uxTaskPriorityGet(NULL) - 1;
esp_eth_mac_t *mac = mac_init(NULL, &mac_config);
#else
esp_eth_mac_t *mac = mac_init(NULL, NULL);
#endif // CONFIG_TARGET_USE_SPI_ETHERNET
TEST_ASSERT_NOT_NULL(mac);
esp_eth_phy_t *phy = phy_init(NULL);
TEST_ASSERT_NOT_NULL(phy);
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration
esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver
TEST_ESP_OK(esp_eth_driver_install(&config, &eth_handle)); // install driver
TEST_ASSERT_NOT_NULL(eth_handle);
extra_eth_config(eth_handle);
TEST_ESP_OK(esp_event_loop_create_default());
EventBits_t bits = 0;
EventGroupHandle_t eth_event_state_group = xEventGroupCreate();
TEST_ASSERT(eth_event_state_group != NULL);
TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, eth_event_state_group));
EventGroupHandle_t eth_event_rx_group = xEventGroupCreate();
TEST_ASSERT(eth_event_rx_group != NULL);
s_recv_info.eth_event_group = eth_event_rx_group;
s_recv_info.check_rx_data = false;
s_recv_info.unicast_rx_cnt = 0;
s_recv_info.multicast_rx_cnt = 0;
s_recv_info.brdcast_rx_cnt = 0;
uint8_t local_mac_addr[ETH_ADDR_LEN] = {};
uint8_t dest_mac_addr[ETH_ADDR_LEN] = {};
TEST_ESP_OK(mac->get_addr(mac, local_mac_addr));
// test app will parse the DUT MAC from this line of log output
printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2],
local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]);
TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &s_recv_info));
// create dummy data packet used for traffic generation
emac_frame_t *pkt = calloc(1, 1500);
pkt->proto = htons(TEST_ETH_TYPE);
memcpy(pkt->src, local_mac_addr, ETH_ADDR_LEN);
printf("EMAC start/stop stress test under heavy Tx traffic\n");
for (int tx_i = 0; tx_i < 10; tx_i++) {
printf("Tx Test iteration %d\n", tx_i);
TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine
bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(WAIT_FOR_CONN_TMO_MS));
TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT);
// at first, check that Tx/Rx path works as expected by poking the test script
// this also serves as main PASS/FAIL criteria
poke_and_wait(eth_handle, &tx_i, sizeof(tx_i), dest_mac_addr, eth_event_rx_group);
memcpy(pkt->dest, dest_mac_addr, ETH_ADDR_LEN);
// *** SPI Ethernet modules deviation ***
// Rationale: Transmit errors are expected only for internal EMAC since it is possible to try to queue more
// data than it is able to process at a time.
#if !CONFIG_TARGET_USE_SPI_ETHERNET
printf("Note: transmit errors are expected...\n");
#endif
// generate heavy Tx traffic
for (int j = 0; j < 150; j++) {
// return value is not checked on purpose since it is expected that it may fail time to time because
// we may try to queue more packets than hardware is able to handle
pkt->data[2] = j & 0xFF; // sequence number
esp_eth_transmit(eth_handle, pkt, 1500);
}
TEST_ESP_OK(esp_eth_stop(eth_handle));
bits = xEventGroupWaitBits(eth_event_state_group, ETH_STOP_BIT, true, true, pdMS_TO_TICKS(3000));
TEST_ASSERT((bits & ETH_STOP_BIT) == ETH_STOP_BIT);
}
printf("EMAC start/stop stress test under heavy Rx traffic\n");
for (int rx_i = 0; rx_i < 10; rx_i++) {
printf("Rx Test iteration %d\n", rx_i);
TEST_ESP_OK(esp_eth_start(eth_handle)); // start Ethernet driver state machine
bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(WAIT_FOR_CONN_TMO_MS));
TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT);
poke_and_wait(eth_handle, &rx_i, sizeof(rx_i), NULL, eth_event_rx_group);
// wait for dummy traffic
xEventGroupClearBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT);
s_recv_info.unicast_rx_cnt = 0;
bits = xEventGroupWaitBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT, true, true, pdMS_TO_TICKS(3000));
TEST_ASSERT((bits & ETH_UNICAST_RECV_BIT) == ETH_UNICAST_RECV_BIT);
vTaskDelay(pdMS_TO_TICKS(500));
TEST_ESP_OK(esp_eth_stop(eth_handle));
bits = xEventGroupWaitBits(eth_event_state_group, ETH_STOP_BIT, true, true, pdMS_TO_TICKS(3000));
TEST_ASSERT((bits & ETH_STOP_BIT) == ETH_STOP_BIT);
printf("Recv packets: %d\n", s_recv_info.unicast_rx_cnt);
TEST_ASSERT_GREATER_THAN_INT32(0, s_recv_info.unicast_rx_cnt);
}
free(pkt);
// Add an extra delay to be sure that there is no traffic generated by the test script during the driver un-installation.
// It was observed unintended behavior of the switch used in test environment when link is set down under heavy load.
vTaskDelay(pdMS_TO_TICKS(500));
TEST_ESP_OK(esp_event_handler_unregister(ETH_EVENT, ESP_EVENT_ANY_ID, eth_event_handler));
TEST_ESP_OK(esp_event_loop_delete_default());
TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle));
phy->del(phy);
mac->del(mac);
extra_cleanup();
vEventGroupDelete(eth_event_rx_group);
vEventGroupDelete(eth_event_state_group);
}
#define MAX_HEAP_ALLOCATION_POINTERS (20)
TEST_CASE("heap utilization", "[ethernet_l2]")
{
esp_eth_mac_t *mac = mac_init(NULL, NULL);
TEST_ASSERT_NOT_NULL(mac);
esp_eth_phy_t *phy = phy_init(NULL);
TEST_ASSERT_NOT_NULL(phy);
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration
esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver
TEST_ESP_OK(esp_eth_driver_install(&config, &eth_handle)); // install driver
TEST_ASSERT_NOT_NULL(eth_handle);
extra_eth_config(eth_handle);
TEST_ESP_OK(esp_event_loop_create_default());
EventBits_t bits = 0;
EventGroupHandle_t eth_event_state_group = xEventGroupCreate();
TEST_ASSERT(eth_event_state_group != NULL);
TEST_ESP_OK(esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, &eth_event_handler, eth_event_state_group));
EventGroupHandle_t eth_event_rx_group = xEventGroupCreate();
TEST_ASSERT(eth_event_rx_group != NULL);
s_recv_info.eth_event_group = eth_event_rx_group;
s_recv_info.check_rx_data = false;
s_recv_info.unicast_rx_cnt = 0;
s_recv_info.multicast_rx_cnt = 0;
s_recv_info.brdcast_rx_cnt = 0;
uint8_t local_mac_addr[ETH_ADDR_LEN] = {};
TEST_ESP_OK(esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, local_mac_addr));
// test app will parse the DUT MAC from this line of log output
printf("DUT MAC: %.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n", local_mac_addr[0], local_mac_addr[1], local_mac_addr[2],
local_mac_addr[3], local_mac_addr[4], local_mac_addr[5]);
TEST_ESP_OK(esp_eth_update_input_path(eth_handle, l2_packet_txrx_test_cb, &s_recv_info));
// *** W5500 deviation ***
// Rationale: W5500 SPI Ethernet module does not support internal loopback
#if !CONFIG_TARGET_ETH_PHY_DEVICE_W5500
// ---------------------------------------
// Loopback greatly simplifies the test !!
// ---------------------------------------
bool loopback_en = true;
TEST_ESP_OK(esp_eth_ioctl(eth_handle, ETH_CMD_S_PHY_LOOPBACK, &loopback_en));
#endif
// start the driver
TEST_ESP_OK(esp_eth_start(eth_handle));
// wait for connection start
bits = xEventGroupWaitBits(eth_event_state_group, ETH_START_BIT, true, true, pdMS_TO_TICKS(ETH_START_TIMEOUT_MS));
TEST_ASSERT((bits & ETH_START_BIT) == ETH_START_BIT);
// wait for connection establish
bits = xEventGroupWaitBits(eth_event_state_group, ETH_CONNECT_BIT, true, true, pdMS_TO_TICKS(ETH_CONNECT_TIMEOUT_MS));
TEST_ASSERT((bits & ETH_CONNECT_BIT) == ETH_CONNECT_BIT);
// create test frame
emac_frame_t *test_pkt = calloc(1, ETH_MAX_PACKET_SIZE);
test_pkt->proto = htons(TEST_ETH_TYPE);
memcpy(test_pkt->dest, local_mac_addr, ETH_ADDR_LEN); // our addr so the frame is not filtered at loopback by MAC
memcpy(test_pkt->src, local_mac_addr, ETH_ADDR_LEN);
// fill with data
for (int i = 0; i < ETH_MAX_PAYLOAD_LEN; i++) {
test_pkt->data[i] = i & 0xFF;
}
// *** W5500 deviation ***
// Rationale: W5500 SPI Ethernet module does not support internal loopback so we need to loop frames back at test PC side
#if CONFIG_TARGET_ETH_PHY_DEVICE_W5500
uint8_t dest_mac_addr[ETH_ADDR_LEN] = {};
poke_and_wait(eth_handle, NULL, 0, dest_mac_addr, eth_event_rx_group);
memcpy(test_pkt->dest, dest_mac_addr, ETH_ADDR_LEN); // overwrite destination address with test PC addr
#endif
uint16_t transmit_size;
size_t free_heap = 0;
uint8_t *memory_p[MAX_HEAP_ALLOCATION_POINTERS] = { 0 };
int32_t mem_block;
ESP_LOGI(TAG, "Allocate all heap");
for (mem_block = 0; mem_block < MAX_HEAP_ALLOCATION_POINTERS; mem_block++) {
free_heap = heap_caps_get_largest_free_block(MALLOC_CAP_DEFAULT);
ESP_LOGD(TAG, "free heap: %i B", free_heap);
memory_p[mem_block] = malloc(free_heap);
if (free_heap < 1024) {
break;
}
}
free_heap = heap_caps_get_largest_free_block(MALLOC_CAP_DEFAULT);
ESP_LOGI(TAG, "remaining free heap: %i B", free_heap);
TEST_ASSERT_LESS_OR_EQUAL_INT(1024, free_heap);
transmit_size = ETH_MAX_PAYLOAD_LEN;
ESP_LOGI(TAG, "Verify that the driver is able to recover from `no mem` error");
// define number of iteration to fill device internal buffer (if driver's flush function didn't work as expected)
int32_t max_i = 10; // default value will be overwritten by module specific value
// *** Ethernet modules deviation ***
// Rationale: Each Ethernet module has different size of Rx buffer
#if CONFIG_TARGET_USE_INTERNAL_ETHERNET
max_i = CONFIG_ETH_DMA_RX_BUFFER_NUM + 2;
#elif CONFIG_TARGET_ETH_PHY_DEVICE_W5500
max_i = W5500_RX_MEM_SIZE / ETH_MAX_PACKET_SIZE + 2;
#elif CONFIG_TARGET_ETH_PHY_DEVICE_DM9051
max_i = DM9051_RX_MEM_SIZE / ETH_MAX_PACKET_SIZE + 2;
#elif CONFIG_TARGET_ETH_PHY_DEVICE_KSZ8851SNL
max_i = KSZ8851SNL_RX_MEM_SIZE / ETH_MAX_PACKET_SIZE + 2;
#endif
for (int32_t i = 0; i < max_i; i++) { // be sure to fill all the descriptors
ESP_LOGI(TAG, "transmit frame size: %" PRIu16 ", i = %" PRIi32, transmit_size, i);
xEventGroupClearBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT);
s_recv_info.brdcast_rx_cnt = 0;
TEST_ESP_OK(esp_eth_transmit(eth_handle, test_pkt, transmit_size));
// wait for dummy traffic
bits = xEventGroupWaitBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT, true, true, pdMS_TO_TICKS(200));
TEST_ASSERT(bits == 0); // we don't received the frame due to "no mem"
}
ESP_LOGI(TAG, "Free previously allocated heap");
while(mem_block > 0) {
free(memory_p[mem_block]);
mem_block--;
}
free_heap = heap_caps_get_largest_free_block(MALLOC_CAP_DEFAULT);
ESP_LOGI(TAG, "free heap: %i B", free_heap);
for (int32_t i = 0; i < max_i; i++) {
ESP_LOGD(TAG, "transmit frame size: %" PRIu16 ", i = %" PRIi32, transmit_size, i);
xEventGroupClearBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT);
s_recv_info.brdcast_rx_cnt = 0;
TEST_ESP_OK(esp_eth_transmit(eth_handle, test_pkt, transmit_size));
// wait for dummy traffic
bits = xEventGroupWaitBits(eth_event_rx_group, ETH_UNICAST_RECV_BIT, true, true, pdMS_TO_TICKS(200));
TEST_ASSERT((bits & ETH_UNICAST_RECV_BIT) == ETH_UNICAST_RECV_BIT); // now, we should be able to receive frames again
}
free(test_pkt);
TEST_ESP_OK(esp_eth_stop(eth_handle));
TEST_ESP_OK(esp_event_handler_unregister(ETH_EVENT, ESP_EVENT_ANY_ID, eth_event_handler));
TEST_ESP_OK(esp_event_loop_delete_default());
TEST_ESP_OK(esp_eth_driver_uninstall(eth_handle));
phy->del(phy);
mac->del(mac);
extra_cleanup();
vEventGroupDelete(eth_event_rx_group);
vEventGroupDelete(eth_event_state_group);
}