esp-idf/components/driver/gdma.c

643 wiersze
23 KiB
C

// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#include <stdlib.h>
#include <sys/cdefs.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/soc_caps.h"
#include "soc/periph_defs.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "driver/periph_ctrl.h"
#include "esp_private/gdma.h"
#include "hal/gdma_hal.h"
#include "hal/gdma_ll.h"
#include "soc/gdma_periph.h"
static const char *TAG = "gdma";
#define DMA_CHECK(a, msg, tag, ret, ...) \
do { \
if (unlikely(!(a))) { \
ESP_LOGE(TAG, "%s(%d): " msg, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
ret_code = ret; \
goto tag; \
} \
} while (0)
#define GDMA_INVALID_PERIPH_TRIG (0x3F)
#define SEARCH_REQUEST_RX_CHANNEL (1 << 0)
#define SEARCH_REQUEST_TX_CHANNEL (1 << 1)
typedef struct gdma_platform_t gdma_platform_t;
typedef struct gdma_group_t gdma_group_t;
typedef struct gdma_pair_t gdma_pair_t;
typedef struct gdma_channel_t gdma_channel_t;
typedef struct gdma_tx_channel_t gdma_tx_channel_t;
typedef struct gdma_rx_channel_t gdma_rx_channel_t;
struct gdma_platform_t {
portMUX_TYPE spinlock; // platform level spinlock
gdma_group_t *groups[SOC_GDMA_GROUPS]; // array of GDMA group instances
};
struct gdma_group_t {
int group_id; // Group ID, index from 0
gdma_hal_context_t hal; // HAL instance is at group level
portMUX_TYPE spinlock; // group level spinlock
int ref_count; // reference count
gdma_pair_t *pairs[SOC_GDMA_PAIRS_PER_GROUP]; // handles of GDMA pairs
};
struct gdma_pair_t {
gdma_group_t *group; // which group the pair belongs to
int pair_id; // Pair ID, index from 0
gdma_tx_channel_t *tx_chan; // pointer of tx channel in the pair
gdma_rx_channel_t *rx_chan; // pointer of rx channel in the pair
int occupy_code; // each bit indicates which channel has been occupied (an occupied channel will be skipped during channel search)
intr_handle_t intr; // Interrupt is at pair level
portMUX_TYPE spinlock; // pair level spinlock
int ref_count; // reference count
};
struct gdma_channel_t {
gdma_pair_t *pair; // which pair the channel belongs to
gdma_channel_direction_t direction; // channel direction
int periph_id; // Peripheral instance ID, indicates which peripheral is connected to this GDMA channel
esp_err_t (*del)(gdma_channel_t *channel); // channel deletion function, it's polymorphic, see `gdma_del_tx_channel` or `gdma_del_rx_channel`
};
struct gdma_tx_channel_t {
gdma_channel_t base; // GDMA channel, base class
void *user_data; // user registered DMA event data
gdma_event_callback_t on_trans_eof; // TX EOF callback
};
struct gdma_rx_channel_t {
gdma_channel_t base; // GDMA channel, base class
void *user_data; // user registered DMA event data
gdma_event_callback_t on_recv_eof; // RX EOF callback
};
static gdma_group_t *gdma_acquire_group_handle(int group_id);
static void gdma_release_group_handle(gdma_group_t *group);
static gdma_pair_t *gdma_acquire_pair_handle(gdma_group_t *group, int pair_id);
static void gdma_release_pair_handle(gdma_pair_t *pair);
static void gdma_uninstall_pair(gdma_pair_t *pair);
static void gdma_uninstall_group(gdma_group_t *group);
static esp_err_t gdma_del_tx_channel(gdma_channel_t *dma_channel);
static esp_err_t gdma_del_rx_channel(gdma_channel_t *dma_channel);
static esp_err_t gdma_install_interrupt(gdma_pair_t *pair);
// gdma driver platform
static gdma_platform_t s_platform = {
.spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED,
.groups = {} // groups will be lazy installed
};
esp_err_t gdma_new_channel(const gdma_channel_alloc_config_t *config, gdma_channel_handle_t *ret_chan)
{
esp_err_t ret_code = ESP_OK;
gdma_tx_channel_t *alloc_tx_channel = NULL;
gdma_rx_channel_t *alloc_rx_channel = NULL;
int search_code = 0;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(config && ret_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
if (config->flags.reserve_sibling) {
search_code = SEARCH_REQUEST_RX_CHANNEL | SEARCH_REQUEST_TX_CHANNEL; // search for a pair of channels
}
if (config->direction == GDMA_CHANNEL_DIRECTION_TX) {
search_code |= SEARCH_REQUEST_TX_CHANNEL; // search TX only
alloc_tx_channel = calloc(1, sizeof(gdma_tx_channel_t));
DMA_CHECK(alloc_tx_channel, "no mem for gdma tx channel", err, ESP_ERR_NO_MEM);
} else if (config->direction == GDMA_CHANNEL_DIRECTION_RX) {
search_code |= SEARCH_REQUEST_RX_CHANNEL; // search RX only
alloc_rx_channel = calloc(1, sizeof(gdma_rx_channel_t));
DMA_CHECK(alloc_rx_channel, "no mem for gdma rx channel", err, ESP_ERR_NO_MEM);
}
if (config->sibling_chan) {
pair = config->sibling_chan->pair;
DMA_CHECK(pair, "invalid sibling channel", err, ESP_ERR_INVALID_ARG);
DMA_CHECK(config->sibling_chan->direction != config->direction,
"sibling channel should have a different direction", err, ESP_ERR_INVALID_ARG);
group = pair->group;
portENTER_CRITICAL(&pair->spinlock);
pair->ref_count++; // channel obtains a reference to pair
portEXIT_CRITICAL(&pair->spinlock);
goto search_done; // skip the search path below if user has specify a sibling channel
}
for (int i = 0; i < SOC_GDMA_GROUPS && search_code; i++) { // loop to search group
group = gdma_acquire_group_handle(i);
for (int j = 0; j < SOC_GDMA_PAIRS_PER_GROUP && search_code && group; j++) { // loop to search pair
pair = gdma_acquire_pair_handle(group, j);
if (pair) {
portENTER_CRITICAL(&pair->spinlock);
if (!(search_code & pair->occupy_code)) { // pair has suitable position for acquired channel(s)
pair->occupy_code |= search_code;
pair->ref_count++; // channel obtains a reference to pair
search_code = 0; // exit search loop
}
portEXIT_CRITICAL(&pair->spinlock);
}
gdma_release_pair_handle(pair);
} // loop used to search pair
gdma_release_group_handle(group);
} // loop used to search group
DMA_CHECK(search_code == 0, "no free gdma channel, search code=%d", err, ESP_ERR_NOT_FOUND, search_code);
search_done:
// register TX channel
if (alloc_tx_channel) {
pair->tx_chan = alloc_tx_channel;
alloc_tx_channel->base.pair = pair;
alloc_tx_channel->base.direction = GDMA_CHANNEL_DIRECTION_TX;
alloc_tx_channel->base.periph_id = GDMA_INVALID_PERIPH_TRIG;
alloc_tx_channel->base.del = gdma_del_tx_channel; // set channel deletion function
*ret_chan = &alloc_tx_channel->base; // return the installed channel
}
// register RX channel
if (alloc_rx_channel) {
pair->rx_chan = alloc_rx_channel;
alloc_rx_channel->base.pair = pair;
alloc_rx_channel->base.direction = GDMA_CHANNEL_DIRECTION_RX;
alloc_rx_channel->base.periph_id = GDMA_INVALID_PERIPH_TRIG;
alloc_rx_channel->base.del = gdma_del_rx_channel; // set channel deletion function
*ret_chan = &alloc_rx_channel->base; // return the installed channel
}
ESP_LOGD(TAG, "new %s channel (%d,%d) at %p", (config->direction == GDMA_CHANNEL_DIRECTION_TX) ? "tx" : "rx",
group->group_id, pair->pair_id, *ret_chan);
return ESP_OK;
err:
if (alloc_tx_channel) {
free(alloc_tx_channel);
}
if (alloc_rx_channel) {
free(alloc_rx_channel);
}
return ret_code;
}
esp_err_t gdma_del_channel(gdma_channel_handle_t dma_chan)
{
esp_err_t ret_code = ESP_OK;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
ret_code = dma_chan->del(dma_chan); // call `gdma_del_tx_channel` or `gdma_del_rx_channel`
err:
return ret_code;
}
esp_err_t gdma_get_channel_id(gdma_channel_handle_t dma_chan, int *channel_id)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
*channel_id = pair->pair_id;
err:
return ret_code;
}
esp_err_t gdma_connect(gdma_channel_handle_t dma_chan, gdma_trigger_t trig_periph)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
DMA_CHECK(dma_chan->periph_id == GDMA_INVALID_PERIPH_TRIG, "channel is using by peripheral: %d", err, ESP_ERR_INVALID_STATE, dma_chan->periph_id);
pair = dma_chan->pair;
group = pair->group;
dma_chan->periph_id = trig_periph.instance_id;
// enable/disable m2m mode
gdma_ll_enable_m2m_mode(group->hal.dev, pair->pair_id, trig_periph.periph == GDMA_TRIG_PERIPH_M2M);
if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
gdma_ll_tx_reset_channel(group->hal.dev, pair->pair_id); // reset channel
if (trig_periph.periph != GDMA_TRIG_PERIPH_M2M) {
gdma_ll_tx_connect_to_periph(group->hal.dev, pair->pair_id, trig_periph.instance_id);
}
} else {
gdma_ll_rx_reset_channel(group->hal.dev, pair->pair_id); // reset channel
if (trig_periph.periph != GDMA_TRIG_PERIPH_M2M) {
gdma_ll_rx_connect_to_periph(group->hal.dev, pair->pair_id, trig_periph.instance_id);
}
}
err:
return ret_code;
}
esp_err_t gdma_disconnect(gdma_channel_handle_t dma_chan)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
DMA_CHECK(dma_chan->periph_id != GDMA_INVALID_PERIPH_TRIG, "no peripheral is connected to the channel", err, ESP_ERR_INVALID_STATE);
pair = dma_chan->pair;
group = pair->group;
dma_chan->periph_id = GDMA_INVALID_PERIPH_TRIG;
if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
gdma_ll_tx_connect_to_periph(group->hal.dev, pair->pair_id, GDMA_INVALID_PERIPH_TRIG);
} else {
gdma_ll_rx_connect_to_periph(group->hal.dev, pair->pair_id, GDMA_INVALID_PERIPH_TRIG);
}
err:
return ret_code;
}
esp_err_t gdma_apply_strategy(gdma_channel_handle_t dma_chan, const gdma_strategy_config_t *config)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
group = pair->group;
if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
gdma_ll_tx_enable_owner_check(group->hal.dev, pair->pair_id, config->owner_check);
gdma_ll_tx_enable_auto_write_back(group->hal.dev, pair->pair_id, config->auto_update_desc);
} else {
gdma_ll_rx_enable_owner_check(group->hal.dev, pair->pair_id, config->owner_check);
}
err:
return ret_code;
}
esp_err_t gdma_register_tx_event_callbacks(gdma_channel_handle_t dma_chan, gdma_tx_event_callbacks_t *cbs, void *user_data)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan && dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
group = pair->group;
gdma_tx_channel_t *tx_chan = __containerof(dma_chan, gdma_tx_channel_t, base);
// lazy install interrupt service
DMA_CHECK(gdma_install_interrupt(pair) == ESP_OK, "install interrupt service failed", err, ESP_FAIL);
// enable/disable GDMA interrupt events for TX channel
portENTER_CRITICAL(&pair->spinlock);
gdma_ll_enable_interrupt(group->hal.dev, pair->pair_id, GDMA_LL_EVENT_TX_EOF, cbs->on_trans_eof != NULL);
portEXIT_CRITICAL(&pair->spinlock);
tx_chan->on_trans_eof = cbs->on_trans_eof;
tx_chan->user_data = user_data;
err:
return ret_code;
}
esp_err_t gdma_register_rx_event_callbacks(gdma_channel_handle_t dma_chan, gdma_rx_event_callbacks_t *cbs, void *user_data)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan && dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
group = pair->group;
gdma_rx_channel_t *rx_chan = __containerof(dma_chan, gdma_rx_channel_t, base);
// lazy install interrupt service
DMA_CHECK(gdma_install_interrupt(pair) == ESP_OK, "install interrupt service failed", err, ESP_FAIL);
// enable/disable GDMA interrupt events for RX channel
portENTER_CRITICAL(&pair->spinlock);
gdma_ll_enable_interrupt(group->hal.dev, pair->pair_id, GDMA_LL_EVENT_RX_SUC_EOF, cbs->on_recv_eof != NULL);
portEXIT_CRITICAL(&pair->spinlock);
rx_chan->on_recv_eof = cbs->on_recv_eof;
rx_chan->user_data = user_data;
err:
return ret_code;
}
esp_err_t gdma_start(gdma_channel_handle_t dma_chan, intptr_t desc_base_addr)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
group = pair->group;
if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
gdma_ll_rx_set_desc_addr(group->hal.dev, pair->pair_id, desc_base_addr);
gdma_ll_rx_start(group->hal.dev, pair->pair_id);
} else {
gdma_ll_tx_set_desc_addr(group->hal.dev, pair->pair_id, desc_base_addr);
gdma_ll_tx_start(group->hal.dev, pair->pair_id);
}
err:
return ret_code;
}
esp_err_t gdma_stop(gdma_channel_handle_t dma_chan)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
group = pair->group;
if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
gdma_ll_rx_stop(group->hal.dev, pair->pair_id);
} else {
gdma_ll_tx_stop(group->hal.dev, pair->pair_id);
}
err:
return ret_code;
}
esp_err_t gdma_append(gdma_channel_handle_t dma_chan)
{
esp_err_t ret_code = ESP_OK;
gdma_pair_t *pair = NULL;
gdma_group_t *group = NULL;
DMA_CHECK(dma_chan, "invalid argument", err, ESP_ERR_INVALID_ARG);
pair = dma_chan->pair;
group = pair->group;
if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
gdma_ll_rx_restart(group->hal.dev, pair->pair_id);
} else {
gdma_ll_tx_restart(group->hal.dev, pair->pair_id);
}
err:
return ret_code;
}
static inline bool gdma_is_group_busy(gdma_group_t *group)
{
return group->ref_count;
}
static void gdma_uninstall_group(gdma_group_t *group)
{
int group_id = group->group_id;
bool do_deinitialize = false;
if (s_platform.groups[group_id] && !gdma_is_group_busy(group)) {
portENTER_CRITICAL(&s_platform.spinlock);
if (s_platform.groups[group_id] && !gdma_is_group_busy(group)) {
do_deinitialize = true;
s_platform.groups[group_id] = NULL; // deregister from platfrom
gdma_ll_enable_clock(group->hal.dev, false);
periph_module_disable(gdma_periph_signals.groups[group_id].module);
}
portEXIT_CRITICAL(&s_platform.spinlock);
}
if (do_deinitialize) {
free(group);
ESP_LOGD(TAG, "del group %d", group_id);
}
}
static gdma_group_t *gdma_acquire_group_handle(int group_id)
{
gdma_group_t *group = NULL;
bool new_group = false;
portENTER_CRITICAL(&s_platform.spinlock);
if (!s_platform.groups[group_id]) {
// lazy install group
group = calloc(1, sizeof(gdma_group_t));
if (group) {
new_group = true;
s_platform.groups[group_id] = group; // register to platform
group->group_id = group_id;
group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
periph_module_enable(gdma_periph_signals.groups[group_id].module); // enable APB to access GDMA registers
gdma_hal_init(&group->hal, group_id); // initialize HAL context
gdma_ll_enable_clock(group->hal.dev, true); // enable gdma clock
}
} else {
group = s_platform.groups[group_id];
}
if (group) {
// someone acquired the group handle means we have a new object that refer to this group
group->ref_count++;
}
portEXIT_CRITICAL(&s_platform.spinlock);
if (new_group) {
ESP_LOGD(TAG, "new group (%d) at %p", group->group_id, group);
}
return group;
}
static void gdma_release_group_handle(gdma_group_t *group)
{
if (group) {
portENTER_CRITICAL(&group->spinlock);
group->ref_count--;
portEXIT_CRITICAL(&group->spinlock);
gdma_uninstall_group(group);
}
}
static inline bool gdma_is_pair_busy(gdma_pair_t *pair)
{
return pair->ref_count;
}
static void gdma_uninstall_pair(gdma_pair_t *pair)
{
gdma_group_t *group = pair->group;
int pair_id = pair->pair_id;
bool do_deinitialize = false;
if (group->pairs[pair_id] && !gdma_is_pair_busy(pair)) {
portENTER_CRITICAL(&group->spinlock);
if (group->pairs[pair_id] && !gdma_is_pair_busy(pair)) {
do_deinitialize = true;
group->pairs[pair_id] = NULL; // deregister from pair
group->ref_count--; // decrease reference count, because this pair won't refer to the group
}
portEXIT_CRITICAL(&group->spinlock);
}
if (do_deinitialize) {
if (pair->intr) {
esp_intr_free(pair->intr); // free interrupt resource
ESP_LOGD(TAG, "uninstall interrupt service for pair (%d,%d)", group->group_id, pair_id);
}
free(pair);
ESP_LOGD(TAG, "del pair (%d,%d)", group->group_id, pair_id);
gdma_uninstall_group(group);
}
}
static gdma_pair_t *gdma_acquire_pair_handle(gdma_group_t *group, int pair_id)
{
gdma_pair_t *pair = NULL;
bool new_pair = false;
portENTER_CRITICAL(&group->spinlock);
if (!group->pairs[pair_id]) {
// lazy install pair
pair = calloc(1, sizeof(gdma_pair_t));
if (pair) {
new_pair = true;
group->pairs[pair_id] = pair; // register to group
group->ref_count++; // pair obtains a reference to group
pair->group = group;
pair->pair_id = pair_id;
pair->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
}
} else {
pair = group->pairs[pair_id];
}
if (pair) {
// someone acquired the pair handle means we have a new object that refer to this pair
pair->ref_count++;
}
portEXIT_CRITICAL(&group->spinlock);
if (new_pair) {
ESP_LOGD(TAG, "new pair (%d,%d) at %p", group->group_id, pair->pair_id, pair);
}
return pair;
}
static void gdma_release_pair_handle(gdma_pair_t *pair)
{
if (pair) {
portENTER_CRITICAL(&pair->spinlock);
pair->ref_count--;
portEXIT_CRITICAL(&pair->spinlock);
gdma_uninstall_pair(pair);
}
}
static esp_err_t gdma_del_tx_channel(gdma_channel_t *dma_channel)
{
gdma_pair_t *pair = dma_channel->pair;
gdma_tx_channel_t *tx_chan = __containerof(dma_channel, gdma_tx_channel_t, base);
portENTER_CRITICAL(&pair->spinlock);
pair->tx_chan = NULL;
pair->ref_count--; // decrease reference count, because this channel won't refer to the pair
pair->occupy_code &= ~SEARCH_REQUEST_TX_CHANNEL;
portEXIT_CRITICAL(&pair->spinlock);
ESP_LOGD(TAG, "del tx channel (%d,%d)", pair->group->group_id, pair->pair_id);
free(tx_chan);
gdma_uninstall_pair(pair);
return ESP_OK;
}
static esp_err_t gdma_del_rx_channel(gdma_channel_t *dma_channel)
{
gdma_pair_t *pair = dma_channel->pair;
gdma_rx_channel_t *rx_chan = __containerof(dma_channel, gdma_rx_channel_t, base);
portENTER_CRITICAL(&pair->spinlock);
pair->rx_chan = NULL;
pair->ref_count--; // decrease reference count, because this channel won't refer to the pair
pair->occupy_code &= ~SEARCH_REQUEST_RX_CHANNEL;
portEXIT_CRITICAL(&pair->spinlock);
ESP_LOGD(TAG, "del rx channel (%d,%d)", pair->group->group_id, pair->pair_id);
free(rx_chan);
gdma_uninstall_pair(pair);
return ESP_OK;
}
static void IRAM_ATTR gdma_default_isr(void *args)
{
gdma_pair_t *pair = (gdma_pair_t *)args;
gdma_group_t *group = pair->group;
gdma_rx_channel_t *rx_chan = pair->rx_chan;
gdma_tx_channel_t *tx_chan = pair->tx_chan;
bool need_yield = false;
// clear pending interrupt event
uint32_t intr_status = gdma_ll_get_interrupt_status(group->hal.dev, pair->pair_id);
gdma_ll_clear_interrupt_status(group->hal.dev, pair->pair_id, intr_status);
if (intr_status & GDMA_LL_EVENT_RX_SUC_EOF) {
if (rx_chan && rx_chan->on_recv_eof) {
uint32_t eof_addr = gdma_ll_rx_get_success_eof_desc_addr(group->hal.dev, pair->pair_id);
gdma_event_data_t edata = {
.rx_eof_desc_addr = eof_addr
};
if (rx_chan->on_recv_eof(&rx_chan->base, &edata, rx_chan->user_data)) {
need_yield = true;
}
}
}
if (intr_status & GDMA_LL_EVENT_TX_EOF) {
if (tx_chan && tx_chan->on_trans_eof) {
uint32_t eof_addr = gdma_ll_tx_get_eof_desc_addr(group->hal.dev, pair->pair_id);
gdma_event_data_t edata = {
.tx_eof_desc_addr = eof_addr
};
if (tx_chan->on_trans_eof(&tx_chan->base, &edata, tx_chan->user_data)) {
need_yield = true;
}
}
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}
static esp_err_t gdma_install_interrupt(gdma_pair_t *pair)
{
esp_err_t ret_code = ESP_OK;
gdma_group_t *group = pair->group;
int isr_flags = 0;
bool do_install_isr = false;
if (!pair->intr) {
portENTER_CRITICAL(&pair->spinlock);
if (!pair->intr) {
do_install_isr = true;
ret_code = esp_intr_alloc(gdma_periph_signals.groups[group->group_id].pairs[pair->pair_id].irq_id, isr_flags, gdma_default_isr, pair, &pair->intr);
gdma_ll_enable_interrupt(group->hal.dev, pair->pair_id, UINT32_MAX, false); // disable all interupt events
gdma_ll_clear_interrupt_status(group->hal.dev, pair->pair_id, UINT32_MAX); // clear all pending events
}
portEXIT_CRITICAL(&pair->spinlock);
}
if (do_install_isr) {
DMA_CHECK(ret_code == ESP_OK, "alloc interrupt failed", err, ret_code);
ESP_LOGD(TAG, "install interrupt service for pair (%d,%d)", group->group_id, pair->pair_id);
}
err:
return ret_code;
}