esp-idf/components/hal/esp32c2/include/hal/adc_ll.h

554 wiersze
17 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/clk_tree_defs.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
/*---------------------------------------------------------------
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA
---------------------------------------------------------------*/
#define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_LL_FSM_START_WAIT_DEFAULT (5)
#define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_LL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_LL_PWDET_CCT_DEFAULT (4)
typedef enum {
ADC_LL_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_LL_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_LL_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */
} adc_ll_power_t;
typedef enum {
ADC_LL_CTRL_DIG = 0, ///< For ADC1. Select DIG controller.
} adc_ll_controller_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Should be called before writing I2C registers. */
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_ctrl, saradc_saradc_sar_clk_div, div);
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
APB_SARADC.saradc_ctrl.saradc_saradc_wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.saradc_ctrl2.saradc_saradc_sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
APB_SARADC.saradc_ctrl2.saradc_saradc_sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_apb_adc_clkm_conf, saradc_reg_clkm_div_num, div_num);
APB_SARADC.saradc_apb_adc_clkm_conf.saradc_reg_clkm_div_b = div_b;
APB_SARADC.saradc_apb_adc_clkm_conf.saradc_reg_clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
APB_SARADC.saradc_apb_adc_clkm_conf.saradc_reg_clk_sel = 2;
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param idx Filter index
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
{
(void)adc_n;
APB_SARADC.saradc_filter_ctrl0.saradc_filter_reset = 1;
APB_SARADC.saradc_filter_ctrl0.saradc_filter_reset = 0;
}
/**
* Set adc digital controller filter coeff.
*
* @param idx filter index
* @param adc_n adc unit
* @param channel adc channel
* @param coeff filter coeff
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
{
uint32_t factor_reg_val = 0;
switch (coeff) {
case ADC_DIGI_IIR_FILTER_COEFF_2:
factor_reg_val = 1;
break;
case ADC_DIGI_IIR_FILTER_COEFF_4:
factor_reg_val = 2;
break;
case ADC_DIGI_IIR_FILTER_COEFF_8:
factor_reg_val = 3;
break;
case ADC_DIGI_IIR_FILTER_COEFF_16:
factor_reg_val = 4;
break;
case ADC_DIGI_IIR_FILTER_COEFF_64:
factor_reg_val = 6;
break;
default:
HAL_ASSERT(false);
}
if (idx == ADC_DIGI_IIR_FILTER_0) {
APB_SARADC.saradc_filter_ctrl0.saradc_filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7);
APB_SARADC.saradc_filter_ctrl1.saradc_filter_factor0 = factor_reg_val;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
APB_SARADC.saradc_filter_ctrl0.saradc_filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7);
APB_SARADC.saradc_filter_ctrl1.saradc_filter_factor1 = factor_reg_val;
}
}
/**
* Enable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @param idx filter index
* @param adc_n ADC unit
* @param enable Enable / Disable
*/
static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
{
(void)adc_n;
if (!enable) {
if (idx == ADC_DIGI_IIR_FILTER_0) {
APB_SARADC.saradc_filter_ctrl0.saradc_filter_channel0 = 0xF;
APB_SARADC.saradc_filter_ctrl1.saradc_filter_factor0 = 0;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
APB_SARADC.saradc_filter_ctrl0.saradc_filter_channel1 = 0xF;
APB_SARADC.saradc_filter_ctrl1.saradc_filter_factor1 = 0;
}
}
//nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled.
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 1;
APB_SARADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
return RTCCNTL.sensor_ctrl.sar2_pwdet_cct;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
__attribute__((always_inline))
static inline void adc_ll_digi_set_power_manage(adc_ll_power_t manage)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_LL_POWER_SW_ON) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 3;
} else if (manage == ADC_LL_POWER_BY_FSM) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 0;
} else if (manage == ADC_LL_POWER_SW_OFF) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 0;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 2;
}
}
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32-C2
}
/* ADC calibration code. */
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
__attribute__((always_inline))
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
(void)adc_n;
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
}
/**
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*/
static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, bool internal_gnd)
{
(void)adc_n;
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
} else {
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
}
/**
* Resume register status after calibration.
*
* @param adc_n ADC index number.
*/
static inline void adc_ll_calibration_finish(adc_unit_t adc_n)
{
(void)adc_n;
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
}
/**
* Set the calibration result to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
__attribute__((always_inline))
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
(void)adc_n;
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
/**
* Set adc output data format for oneshot mode
*
* @note ESP32C2 Oneshot mode only supports 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32C2 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_channel = ((adc_n << 3) | channel);
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_channel = ((adc_n << 3) | 0xF);
}
/**
* Start oneshot conversion by software
*
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
* This hardware limitation will be removed in future versions.
*/
static inline void adc_oneshot_ll_start(bool val)
{
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_start = val;
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
APB_SARADC.saradc_int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
{
return (APB_SARADC.saradc_int_raw.val & event_mask);
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
uint32_t ret_val = 0;
ret_val = APB_SARADC.saradc1_data_status.saradc1_data & 0xfff;
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 1: The data is correct to use.
* - 0: The data is invalid.
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
return true;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
(void)adc_n;
(void)inv_en;
//For compatibility
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 1;
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
APB_SARADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 0;
APB_SARADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 0;
}
/**
* Set attenuation
*
* @note Attenuation is for all channels
*
* @param adc_n ADC unit
* @param channel ADC channel
* @param atten ADC attenuation
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
(void)adc_n;
(void)channel;
// Attenuation is for all channels, unit and channel are for compatibility
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_atten = atten;
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
(void)adc_n;
(void)channel;
return (adc_atten_t)(APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_atten);
}
#ifdef __cplusplus
}
#endif