esp-idf/components/esp32/core_dump.c

563 wiersze
20 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/uart_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "driver/gpio.h"
#include "rom/crc.h"
#include "esp_panic.h"
#include "esp_partition.h"
#if CONFIG_ESP32_ENABLE_COREDUMP
#define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
#include "esp_log.h"
const static DRAM_ATTR char TAG[] = "esp_core_dump";
#define ESP_COREDUMP_LOG( level, format, ... ) if (LOG_LOCAL_LEVEL >= level) { ets_printf(DRAM_STR(format), esp_log_early_timestamp(), (const char *)TAG, ##__VA_ARGS__); }
#define ESP_COREDUMP_LOGE( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_ERROR, LOG_FORMAT(E, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGW( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_WARN, LOG_FORMAT(W, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGI( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_INFO, LOG_FORMAT(I, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGD( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_DEBUG, LOG_FORMAT(D, format), ##__VA_ARGS__)
#define ESP_COREDUMP_LOGV( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_VERBOSE, LOG_FORMAT(V, format), ##__VA_ARGS__)
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) ESP_COREDUMP_LOGD(format, ##__VA_ARGS__)
#else
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
#endif
// TODO: allow user to set this in menuconfig or get tasks iteratively
#define COREDUMP_MAX_TASKS_NUM 32
#define COREDUMP_MAX_TASK_STACK_SIZE (64*1024)
typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
/** core dump emitter control structure */
typedef struct _core_dump_write_config_t
{
// this function is called before core dump data writing
// used for sanity checks
esp_core_dump_write_prepare_t prepare;
// this function is called at the beginning of data writing
esp_core_dump_write_start_t start;
// this function is called when all dump data are written
esp_core_dump_write_end_t end;
// this function is called to write data chunk
esp_core_dump_flash_write_data_t write;
// number of tasks with corrupted TCBs
uint32_t bad_tasks_num;
// pointer to data which are specific for particular core dump emitter
void * priv;
} core_dump_write_config_t;
/** core dump data header */
typedef struct _core_dump_header_t
{
uint32_t data_len; // data length
uint32_t tasks_num; // number of tasks
uint32_t tcb_sz; // size of TCB
} core_dump_header_t;
/** core dump task data header */
typedef struct _core_dump_task_header_t
{
void * tcb_addr; // TCB address
uint32_t stack_start; // stack start address
uint32_t stack_end; // stack end address
} core_dump_task_header_t;
static inline bool esp_task_stack_start_is_sane(uint32_t sp)
{
return !(sp < 0x3ffae010UL || sp > 0x3fffffffUL);
}
static inline bool esp_tcb_addr_is_sane(uint32_t addr, uint32_t sz)
{
//TODO: currently core dump supports TCBs in DRAM only, external SRAM not supported yet
return !(addr < 0x3ffae000UL || (addr + sz) > 0x40000000UL);
}
static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg)
{
int cur_task_bad = 0;
esp_err_t err;
TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
UBaseType_t tcb_sz, tcb_sz_padded, task_num;
uint32_t data_len = 0, i, len;
union
{
core_dump_header_t hdr;
core_dump_task_header_t task_hdr;
} dump_data;
task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
// take TCB padding into account, actual TCB size will be stored in header
if (tcb_sz % sizeof(uint32_t))
tcb_sz_padded = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
else
tcb_sz_padded = tcb_sz;
// header + tasknum*(tcb + stack start/end + tcb addr)
data_len = sizeof(core_dump_header_t) + task_num*(tcb_sz_padded + sizeof(core_dump_task_header_t));
for (i = 0; i < task_num; i++) {
if (!esp_tcb_addr_is_sane((uint32_t)tasks[i].pxTCB, tcb_sz)) {
ESP_COREDUMP_LOG_PROCESS("Bad TCB addr %x!", tasks[i].pxTCB);
write_cfg->bad_tasks_num++;
continue;
}
if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
// set correct stack top for current task
tasks[i].pxTopOfStack = (StackType_t *)frame;
ESP_COREDUMP_LOG_PROCESS("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x",
frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
}
else {
XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
if (task_frame->exit == 0) {
ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x",
task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
}
else {
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
#endif
ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x",
task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
}
}
len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
// check task's stack
if (!esp_stack_ptr_is_sane((uint32_t)tasks[i].pxTopOfStack) || !esp_task_stack_start_is_sane((uint32_t)tasks[i].pxEndOfStack)
|| len > COREDUMP_MAX_TASK_STACK_SIZE) {
if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
cur_task_bad = 1;
}
ESP_COREDUMP_LOG_PROCESS("Corrupted TCB %x: stack len %lu, top %x, end %x!",
tasks[i].pxTCB, len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
tasks[i].pxTCB = 0; // make TCB addr invalid to skip it in dump
write_cfg->bad_tasks_num++;
} else {
ESP_COREDUMP_LOG_PROCESS("Stack len = %lu (%x %x)", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
// take stack padding into account
len = (len + sizeof(uint32_t) - 1) & ~(sizeof(uint32_t) - 1);
data_len += len;
}
}
data_len -= write_cfg->bad_tasks_num*(tcb_sz_padded + sizeof(core_dump_task_header_t));
ESP_COREDUMP_LOG_PROCESS("Core dump len = %lu (%d %d)", data_len, task_num, write_cfg->bad_tasks_num);
// prepare write
if (write_cfg->prepare) {
err = write_cfg->prepare(write_cfg->priv, &data_len);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to prepare core dump (%d)!", err);
return;
}
}
// write start
if (write_cfg->start) {
err = write_cfg->start(write_cfg->priv);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to start core dump (%d)!", err);
return;
}
}
// write header
dump_data.hdr.data_len = data_len;
dump_data.hdr.tasks_num = task_num - write_cfg->bad_tasks_num;
dump_data.hdr.tcb_sz = tcb_sz;
err = write_cfg->write(write_cfg->priv, &dump_data, sizeof(core_dump_header_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write core dump header (%d)!", err);
return;
}
// write tasks
for (i = 0; i < task_num; i++) {
if (!esp_tcb_addr_is_sane((uint32_t)tasks[i].pxTCB, tcb_sz)) {
ESP_COREDUMP_LOG_PROCESS("Skip TCB with bad addr %x!", tasks[i].pxTCB);
continue;
}
ESP_COREDUMP_LOG_PROCESS("Dump task %x", tasks[i].pxTCB);
// save TCB address, stack base and stack top addr
dump_data.task_hdr.tcb_addr = tasks[i].pxTCB;
dump_data.task_hdr.stack_start = (uint32_t)tasks[i].pxTopOfStack;
dump_data.task_hdr.stack_end = (uint32_t)tasks[i].pxEndOfStack;
err = write_cfg->write(write_cfg->priv, &dump_data, sizeof(core_dump_task_header_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write task header (%d)!", err);
return;
}
// save TCB
err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write TCB (%d)!", err);
return;
}
// save task stack
if (tasks[i].pxTopOfStack != 0 && tasks[i].pxEndOfStack != 0) {
err = write_cfg->write(write_cfg->priv, tasks[i].pxTopOfStack,
(uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write task stack (%d)!", err);
return;
}
} else {
ESP_COREDUMP_LOG_PROCESS("Skip corrupted task %x stack!", tasks[i].pxTCB);
}
}
// write end
if (write_cfg->end) {
err = write_cfg->end(write_cfg->priv);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to end core dump (%d)!", err);
return;
}
}
if (write_cfg->bad_tasks_num) {
ESP_COREDUMP_LOGE("Skipped %d tasks with bad TCB!", write_cfg->bad_tasks_num);
if (cur_task_bad) {
ESP_COREDUMP_LOGE("Crashed task has been skipped!");
}
}
}
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
// magic numbers to control core dump data consistency
#define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL
#define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL
typedef struct _core_dump_write_flash_data_t
{
uint32_t off;
} core_dump_write_flash_data_t;
typedef struct _core_dump_partition_t
{
// core dump partition start
uint32_t start;
// core dump partition size
uint32_t size;
} core_dump_partition_t;
typedef struct _core_dump_flash_config_t
{
// core dump partition start
core_dump_partition_t partition;
// core dump partition size
uint32_t crc;
} core_dump_flash_config_t;
// core dump flash data
static core_dump_flash_config_t s_core_flash_config;
static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size)
{
esp_err_t err;
uint32_t data_len = 0, k, len;
union
{
uint8_t data8[4];
uint32_t data32;
} rom_data;
data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
assert(off >= s_core_flash_config.partition.start);
assert((off + data_len + (data_size % sizeof(uint32_t) ? sizeof(uint32_t) : 0)) <=
s_core_flash_config.partition.start + s_core_flash_config.partition.size);
err = spi_flash_write(off, data, data_len);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write data to flash (%d)!", err);
return 0;
}
len = data_size % sizeof(uint32_t);
if (len) {
// write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header
rom_data.data32 = 0;
for (k = 0; k < len; k++)
rom_data.data8[k] = *(data + data_len + k);
err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to finish write data to flash (%d)!", err);
return 0;
}
data_len += sizeof(uint32_t);
}
return data_len;
}
static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
{
esp_err_t err;
uint32_t sec_num;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// check for available space in partition
// add space for 2 magics. TODO: change to CRC
if ((*data_len + 2*sizeof(uint32_t)) > s_core_flash_config.partition.size) {
ESP_COREDUMP_LOGE("Not enough space to save core dump!");
return ESP_ERR_NO_MEM;
}
*data_len += 2*sizeof(uint32_t);
wr_data->off = 0;
sec_num = *data_len / SPI_FLASH_SEC_SIZE;
if (*data_len % SPI_FLASH_SEC_SIZE)
sec_num++;
assert(sec_num * SPI_FLASH_SEC_SIZE <= s_core_flash_config.partition.size);
err = spi_flash_erase_range(s_core_flash_config.partition.start + 0, sec_num * SPI_FLASH_SEC_SIZE);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to erase flash (%d)!", err);
return err;
}
return err;
}
static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
{
esp_err_t err = ESP_OK;
uint32_t data32 = word;
assert(wr_data->off + sizeof(uint32_t) <= s_core_flash_config.partition.size);
err = spi_flash_write(s_core_flash_config.partition.start + wr_data->off, &data32, sizeof(uint32_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write to flash (%d)!", err);
return err;
}
wr_data->off += sizeof(uint32_t);
return err;
}
static esp_err_t esp_core_dump_flash_write_start(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// save magic 1
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
}
static esp_err_t esp_core_dump_flash_write_end(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
#if LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG
union
{
uint8_t data8[16];
uint32_t data32[4];
} rom_data;
esp_err_t err = spi_flash_read(s_core_flash_config.partition.start + 0, &rom_data, sizeof(rom_data));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to read flash (%d)!", err);
return err;
}
else {
ESP_COREDUMP_LOG_PROCESS("Data from flash:");
for (uint32_t i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
ESP_COREDUMP_LOG_PROCESS("%x", rom_data.data32[i]);
}
}
#endif
// save magic 2
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
}
static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
uint32_t len = esp_core_dump_write_flash_padded(s_core_flash_config.partition.start + wr_data->off, data, data_len);
if (len != data_len)
return ESP_FAIL;
wr_data->off += len;
return err;
}
void esp_core_dump_to_flash(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
core_dump_write_flash_data_t wr_data;
uint32_t crc = crc32_le(UINT32_MAX, (uint8_t const *)&s_core_flash_config.partition,
sizeof(s_core_flash_config.partition));
if (s_core_flash_config.crc != crc) {
ESP_COREDUMP_LOGE("Core dump flash config is corrupted! CRC=0x%x instead of 0x%x", crc, s_core_flash_config.crc);
return;
}
/* init non-OS flash access critical section */
spi_flash_guard_set(&g_flash_guard_no_os_ops);
memset(&wr_cfg, 0, sizeof(wr_cfg));
wr_cfg.prepare = esp_core_dump_flash_write_prepare;
wr_cfg.start = esp_core_dump_flash_write_start;
wr_cfg.end = esp_core_dump_flash_write_end;
wr_cfg.write = esp_core_dump_flash_write_data;
wr_cfg.priv = &wr_data;
ESP_COREDUMP_LOGI("Save core dump to flash...");
esp_core_dump_write(frame, &wr_cfg);
ESP_COREDUMP_LOGI("Core dump has been saved to flash.");
}
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
const static DRAM_ATTR char b64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
int i, j, a, b, c;
for (i = j = 0; i < src_len; i += 3) {
a = src[i];
b = i + 1 >= src_len ? 0 : src[i + 1];
c = i + 2 >= src_len ? 0 : src[i + 2];
dst[j++] = b64[a >> 2];
dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
if (i + 1 < src_len) {
dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
}
if (i + 2 < src_len) {
dst[j++] = b64[c & 0x3F];
}
}
while (j % 4 != 0) {
dst[j++] = '=';
}
dst[j++] = '\0';
}
static esp_err_t esp_core_dump_uart_write_start(void *priv)
{
esp_err_t err = ESP_OK;
ets_printf(DRAM_STR("================= CORE DUMP START =================\r\n"));
return err;
}
static esp_err_t esp_core_dump_uart_write_end(void *priv)
{
esp_err_t err = ESP_OK;
ets_printf(DRAM_STR("================= CORE DUMP END =================\r\n"));
return err;
}
static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
char buf[64 + 4], *addr = data;
char *end = addr + data_len;
while (addr < end) {
size_t len = end - addr;
if (len > 48) len = 48;
/* Copy to stack to avoid alignment restrictions. */
char *tmp = buf + (sizeof(buf) - len);
memcpy(tmp, addr, len);
esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
addr += len;
ets_printf(DRAM_STR("%s\r\n"), buf);
}
return err;
}
static int esp_core_dump_uart_get_char() {
int i;
uint32_t reg = (READ_PERI_REG(UART_STATUS_REG(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if (reg)
i = READ_PERI_REG(UART_FIFO_REG(0));
else
i = -1;
return i;
}
void esp_core_dump_to_uart(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
uint32_t tm_end, tm_cur;
int ch;
memset(&wr_cfg, 0, sizeof(wr_cfg));
wr_cfg.prepare = NULL;
wr_cfg.start = esp_core_dump_uart_write_start;
wr_cfg.end = esp_core_dump_uart_write_end;
wr_cfg.write = esp_core_dump_uart_write_data;
wr_cfg.priv = NULL;
//Make sure txd/rxd are enabled
// use direct reg access instead of gpio_pullup_dis which can cause exception when flash cache is disabled
REG_CLR_BIT(GPIO_PIN_REG_1, FUN_PU);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
ESP_COREDUMP_LOGI("Press Enter to print core dump to UART...");
tm_end = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000) + CONFIG_ESP32_CORE_DUMP_UART_DELAY;
ch = esp_core_dump_uart_get_char();
while (!(ch == '\n' || ch == '\r')) {
tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
if (tm_cur >= tm_end)
break;
ch = esp_core_dump_uart_get_char();
}
ESP_COREDUMP_LOGI("Print core dump to uart...");
esp_core_dump_write(frame, &wr_cfg);
ESP_COREDUMP_LOGI("Core dump has been written to uart.");
}
#endif
void esp_core_dump_init()
{
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
const esp_partition_t *core_part;
ESP_COREDUMP_LOGI("Init core dump to flash");
core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
if (!core_part) {
ESP_COREDUMP_LOGE("No core dump partition found!");
return;
}
ESP_COREDUMP_LOGI("Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
s_core_flash_config.partition.start = core_part->address;
s_core_flash_config.partition.size = core_part->size;
s_core_flash_config.crc = crc32_le(UINT32_MAX, (uint8_t const *)&s_core_flash_config.partition,
sizeof(s_core_flash_config.partition));
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
ESP_COREDUMP_LOGI("Init core dump to UART");
#endif
}
#endif