kopia lustrzana https://github.com/espressif/esp-idf
263 wiersze
11 KiB
C
263 wiersze
11 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2017-2022 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "esp_efuse_utility.h"
|
|
#include "soc/efuse_periph.h"
|
|
#include "hal/efuse_hal.h"
|
|
#include "esp_private/esp_clk.h"
|
|
#include "esp_log.h"
|
|
#include "assert.h"
|
|
#include "sdkconfig.h"
|
|
#include <sys/param.h>
|
|
|
|
static const char *TAG = "efuse";
|
|
|
|
#ifdef CONFIG_EFUSE_VIRTUAL
|
|
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
|
|
#endif // CONFIG_EFUSE_VIRTUAL
|
|
|
|
/*Range addresses to read blocks*/
|
|
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
|
|
{EFUSE_BLK0_RDATA0_REG, EFUSE_BLK0_RDATA6_REG}, // range address of EFUSE_BLK0
|
|
{EFUSE_BLK1_RDATA0_REG, EFUSE_BLK1_RDATA7_REG}, // range address of EFUSE_BLK1
|
|
{EFUSE_BLK2_RDATA0_REG, EFUSE_BLK2_RDATA7_REG}, // range address of EFUSE_BLK2
|
|
{EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
|
|
};
|
|
|
|
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
|
|
|
|
/*Range addresses to write blocks (it is not real regs, it is a buffer) */
|
|
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
|
|
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][6]},
|
|
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][7]},
|
|
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
|
|
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
|
|
};
|
|
|
|
#ifndef CONFIG_EFUSE_VIRTUAL
|
|
/* Addresses to write blocks*/
|
|
const uint32_t start_write_addr[] = {
|
|
EFUSE_BLK0_WDATA0_REG,
|
|
EFUSE_BLK1_WDATA0_REG,
|
|
EFUSE_BLK2_WDATA0_REG,
|
|
EFUSE_BLK3_WDATA0_REG,
|
|
};
|
|
|
|
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len);
|
|
|
|
// Update Efuse timing configuration
|
|
static esp_err_t esp_efuse_set_timing(void)
|
|
{
|
|
uint32_t apb_freq_mhz = esp_clk_apb_freq() / 1000000;
|
|
efuse_hal_set_timing(apb_freq_mhz);
|
|
return ESP_OK;
|
|
}
|
|
#endif // ifndef CONFIG_EFUSE_VIRTUAL
|
|
|
|
// Efuse read operation: copies data from physical efuses to efuse read registers.
|
|
void esp_efuse_utility_clear_program_registers(void)
|
|
{
|
|
efuse_hal_clear_program_registers();
|
|
}
|
|
|
|
esp_err_t esp_efuse_utility_check_errors(void)
|
|
{
|
|
return ESP_OK;
|
|
}
|
|
|
|
// Burn values written to the efuse write registers
|
|
esp_err_t esp_efuse_utility_burn_chip(void)
|
|
{
|
|
esp_err_t error = ESP_OK;
|
|
#ifdef CONFIG_EFUSE_VIRTUAL
|
|
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
|
|
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
|
int subblock = 0;
|
|
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
|
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
|
|
}
|
|
}
|
|
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
|
|
esp_efuse_utility_write_efuses_to_flash();
|
|
#endif
|
|
#else // CONFIG_EFUSE_VIRTUAL
|
|
if (esp_efuse_set_timing() != ESP_OK) {
|
|
ESP_LOGE(TAG, "Efuse fields are not burnt");
|
|
} else {
|
|
// Permanently update values written to the efuse write registers
|
|
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
|
|
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
|
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
|
bool need_burn_block = false;
|
|
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
|
if (REG_READ(addr_wr_block) != 0) {
|
|
need_burn_block = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!need_burn_block) {
|
|
continue;
|
|
}
|
|
if (error) {
|
|
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
|
|
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
|
|
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
|
|
continue;
|
|
}
|
|
efuse_hal_clear_program_registers();
|
|
unsigned w_data_len;
|
|
unsigned r_data_len;
|
|
if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
|
esp_efuse_utility_apply_34_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES);
|
|
r_data_len = ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES;
|
|
w_data_len = 32;
|
|
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
|
|
apply_repeat_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], 16);
|
|
r_data_len = ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES;
|
|
w_data_len = 32;
|
|
} else {
|
|
r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
|
|
w_data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
|
|
memcpy((void *)start_write_addr[num_block], (void *)range_write_addr_blocks[num_block].start, w_data_len);
|
|
}
|
|
|
|
uint32_t backup_write_data[8];
|
|
memcpy(backup_write_data, (void *)start_write_addr[num_block], w_data_len);
|
|
int repeat_burn_op = 1;
|
|
bool correct_written_data;
|
|
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
|
|
if (coding_error_before) {
|
|
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
|
|
}
|
|
bool coding_error_occurred;
|
|
|
|
do {
|
|
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
|
|
efuse_hal_program(0); // BURN a block
|
|
|
|
bool coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
|
|
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
|
|
if (coding_error_occurred) {
|
|
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
|
|
}
|
|
|
|
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
|
|
if (!correct_written_data || coding_error_occurred) {
|
|
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
|
|
memcpy((void *)start_write_addr[num_block], (void *)backup_write_data, w_data_len);
|
|
}
|
|
|
|
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
|
|
|
|
if (coding_error_occurred) {
|
|
ESP_LOGW(TAG, "Coding error was not fixed");
|
|
}
|
|
if (!correct_written_data) {
|
|
ESP_LOGE(TAG, "Written data are incorrect");
|
|
error = ESP_FAIL;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EFUSE_VIRTUAL
|
|
esp_efuse_utility_reset();
|
|
return error;
|
|
}
|
|
|
|
esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
|
|
{
|
|
if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
while (in_bytes_len > 0) {
|
|
uint8_t out[8];
|
|
uint8_t xor = 0;
|
|
uint8_t mul = 0;
|
|
for (int i = 0; i < 6; i++) {
|
|
xor ^= in_bytes[i];
|
|
mul += (i + 1) * __builtin_popcount(in_bytes[i]);
|
|
}
|
|
|
|
memcpy(out, in_bytes, 6); // Data bytes
|
|
out[6] = xor;
|
|
out[7] = mul;
|
|
|
|
memcpy(out_words, out, 8);
|
|
|
|
in_bytes_len -= 6;
|
|
in_bytes += 6;
|
|
out_words += 2;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
#ifndef CONFIG_EFUSE_VIRTUAL
|
|
|
|
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
|
|
{
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
memcpy(&out_words[i * 4], (uint32_t *)in_bytes, in_bytes_len);
|
|
}
|
|
}
|
|
#endif // CONFIG_EFUSE_VIRTUAL
|
|
|
|
static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
|
|
{
|
|
int i = 0;
|
|
for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++i) {
|
|
buf_r_data[i] = esp_efuse_utility_read_reg(num_block, i);
|
|
}
|
|
}
|
|
|
|
// This function just checkes that given data for blocks will not rise a coding issue during the burn operation.
|
|
// Encoded data will be set during the burn operation.
|
|
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
|
|
{
|
|
uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
|
|
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
|
|
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
|
|
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
|
if (scheme != EFUSE_CODING_SCHEME_NONE) {
|
|
bool is_write_data = false;
|
|
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
|
if (REG_READ(addr_wr_block)) {
|
|
is_write_data = true;
|
|
break;
|
|
}
|
|
}
|
|
if (is_write_data) {
|
|
read_r_data(num_block, (uint32_t*)buf_r_data);
|
|
uint8_t* buf_w_data = (uint8_t*)range_write_addr_blocks[num_block].start;
|
|
if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
|
if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
|
|
return ESP_ERR_CODING;
|
|
}
|
|
for (int i = 0; i < ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES; ++i) {
|
|
if (buf_w_data[i] != 0) {
|
|
int st_offset_buf = (i / 6) * 6;
|
|
// check that place is free.
|
|
for (int n = st_offset_buf; n < st_offset_buf + 6; ++n) {
|
|
if (buf_r_data[n] != 0) {
|
|
ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
|
|
return ESP_ERR_CODING;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
|
|
for (int i = 4; i < 8; ++i) {
|
|
if (*((uint32_t*)buf_w_data + i) != 0) {
|
|
return ESP_ERR_CODING;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|