kopia lustrzana https://github.com/espressif/esp-idf
2093 wiersze
63 KiB
C
Executable File
2093 wiersze
63 KiB
C
Executable File
/**
|
|
* @file
|
|
* Transmission Control Protocol for IP
|
|
*
|
|
* This file contains common functions for the TCP implementation, such as functinos
|
|
* for manipulating the data structures and the TCP timer functions. TCP functions
|
|
* related to input and output is found in tcp_in.c and tcp_out.c respectively.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*
|
|
* This file is part of the lwIP TCP/IP stack.
|
|
*
|
|
* Author: Adam Dunkels <adam@sics.se>
|
|
*
|
|
*/
|
|
|
|
#include "lwip/opt.h"
|
|
|
|
#if LWIP_TCP /* don't build if not configured for use in lwipopts.h */
|
|
|
|
#include "lwip/def.h"
|
|
#include "lwip/mem.h"
|
|
#include "lwip/memp.h"
|
|
#include "lwip/tcp.h"
|
|
#include "lwip/priv/tcp_priv.h"
|
|
#include "lwip/debug.h"
|
|
#include "lwip/stats.h"
|
|
#include "lwip/ip6.h"
|
|
#include "lwip/ip6_addr.h"
|
|
#include "lwip/nd6.h"
|
|
|
|
#include <string.h>
|
|
|
|
#ifndef TCP_LOCAL_PORT_RANGE_START
|
|
/* From http://www.iana.org/assignments/port-numbers:
|
|
"The Dynamic and/or Private Ports are those from 49152 through 65535" */
|
|
#define TCP_LOCAL_PORT_RANGE_START 0xc000
|
|
#define TCP_LOCAL_PORT_RANGE_END 0xffff
|
|
#define TCP_ENSURE_LOCAL_PORT_RANGE(port) ((u16_t)(((port) & ~TCP_LOCAL_PORT_RANGE_START) + TCP_LOCAL_PORT_RANGE_START))
|
|
#endif
|
|
|
|
#if LWIP_TCP_KEEPALIVE
|
|
#define TCP_KEEP_DUR(pcb) ((pcb)->keep_cnt * (pcb)->keep_intvl)
|
|
#define TCP_KEEP_INTVL(pcb) ((pcb)->keep_intvl)
|
|
#else /* LWIP_TCP_KEEPALIVE */
|
|
#define TCP_KEEP_DUR(pcb) TCP_MAXIDLE
|
|
#define TCP_KEEP_INTVL(pcb) TCP_KEEPINTVL_DEFAULT
|
|
#endif /* LWIP_TCP_KEEPALIVE */
|
|
|
|
const char * const tcp_state_str[] = {
|
|
"CLOSED",
|
|
"LISTEN",
|
|
"SYN_SENT",
|
|
"SYN_RCVD",
|
|
"ESTABLISHED",
|
|
"FIN_WAIT_1",
|
|
"FIN_WAIT_2",
|
|
"CLOSE_WAIT",
|
|
"CLOSING",
|
|
"LAST_ACK",
|
|
"TIME_WAIT"
|
|
};
|
|
|
|
|
|
/* last local TCP port */
|
|
static s16_t tcp_port = TCP_LOCAL_PORT_RANGE_START;
|
|
|
|
/* Incremented every coarse grained timer shot (typically every 500 ms). */
|
|
u32_t tcp_ticks;
|
|
|
|
const u8_t tcp_backoff[13] = { 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7};
|
|
/* Times per slowtmr hits */
|
|
const u8_t tcp_persist_backoff[7] = { 3, 6, 12, 24, 48, 96, 120 };
|
|
|
|
|
|
/* The TCP PCB lists. */
|
|
|
|
/** List of all TCP PCBs bound but not yet (connected || listening) */
|
|
struct tcp_pcb *tcp_bound_pcbs;
|
|
/** List of all TCP PCBs in LISTEN state */
|
|
union tcp_listen_pcbs_t tcp_listen_pcbs;
|
|
/** List of all TCP PCBs that are in a state in which
|
|
* they accept or send data. */
|
|
struct tcp_pcb *tcp_active_pcbs;
|
|
/** List of all TCP PCBs in TIME-WAIT state */
|
|
struct tcp_pcb *tcp_tw_pcbs;
|
|
|
|
/** An array with all (non-temporary) PCB lists, mainly used for smaller code size */
|
|
struct tcp_pcb ** const tcp_pcb_lists[] = {&tcp_listen_pcbs.pcbs, &tcp_bound_pcbs,
|
|
&tcp_active_pcbs, &tcp_tw_pcbs};
|
|
|
|
u8_t tcp_active_pcbs_changed;
|
|
|
|
/** Timer counter to handle calling slow-timer from tcp_tmr() */
|
|
static u8_t tcp_timer;
|
|
static u8_t tcp_timer_ctr;
|
|
static u16_t tcp_new_port(void);
|
|
|
|
/**
|
|
* Initialize this module.
|
|
*/
|
|
void
|
|
tcp_init(void)
|
|
{
|
|
#if LWIP_RANDOMIZE_INITIAL_LOCAL_PORTS && defined(LWIP_RAND)
|
|
tcp_port = TCP_ENSURE_LOCAL_PORT_RANGE(LWIP_RAND());
|
|
#endif /* LWIP_RANDOMIZE_INITIAL_LOCAL_PORTS && defined(LWIP_RAND) */
|
|
}
|
|
|
|
/**
|
|
* Called periodically to dispatch TCP timers.
|
|
*/
|
|
void
|
|
tcp_tmr(void)
|
|
{
|
|
/* Call tcp_fasttmr() every 250 ms */
|
|
tcp_fasttmr();
|
|
|
|
if (++tcp_timer & 1) {
|
|
/* Call tcp_slowtmr() every 500 ms, i.e., every other timer
|
|
tcp_tmr() is called. */
|
|
tcp_slowtmr();
|
|
}
|
|
}
|
|
|
|
void
|
|
tcp_set_fin_wait_1(struct tcp_pcb *pcb)
|
|
{
|
|
pcb->state = FIN_WAIT_1;
|
|
#if ESP_LWIP
|
|
pcb->tmr = tcp_ticks;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Closes the TX side of a connection held by the PCB.
|
|
* For tcp_close(), a RST is sent if the application didn't receive all data
|
|
* (tcp_recved() not called for all data passed to recv callback).
|
|
*
|
|
* Listening pcbs are freed and may not be referenced any more.
|
|
* Connection pcbs are freed if not yet connected and may not be referenced
|
|
* any more. If a connection is established (at least SYN received or in
|
|
* a closing state), the connection is closed, and put in a closing state.
|
|
* The pcb is then automatically freed in tcp_slowtmr(). It is therefore
|
|
* unsafe to reference it.
|
|
*
|
|
* @param pcb the tcp_pcb to close
|
|
* @return ERR_OK if connection has been closed
|
|
* another err_t if closing failed and pcb is not freed
|
|
*/
|
|
static err_t
|
|
tcp_close_shutdown(struct tcp_pcb *pcb, u8_t rst_on_unacked_data)
|
|
{
|
|
err_t err;
|
|
|
|
if (rst_on_unacked_data && ((pcb->state == ESTABLISHED) || (pcb->state == CLOSE_WAIT))) {
|
|
if ((pcb->refused_data != NULL) || (pcb->rcv_wnd != TCP_WND_MAX(pcb))) {
|
|
/* Not all data received by application, send RST to tell the remote
|
|
side about this. */
|
|
LWIP_ASSERT("pcb->flags & TF_RXCLOSED", pcb->flags & TF_RXCLOSED);
|
|
|
|
/* don't call tcp_abort here: we must not deallocate the pcb since
|
|
that might not be expected when calling tcp_close */
|
|
tcp_rst(pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
|
|
pcb->local_port, pcb->remote_port);
|
|
|
|
tcp_pcb_purge(pcb);
|
|
TCP_RMV_ACTIVE(pcb);
|
|
if (pcb->state == ESTABLISHED) {
|
|
/* move to TIME_WAIT since we close actively */
|
|
pcb->state = TIME_WAIT;
|
|
TCP_REG(&tcp_tw_pcbs, pcb);
|
|
} else {
|
|
/* CLOSE_WAIT: deallocate the pcb since we already sent a RST for it */
|
|
if (tcp_input_pcb == pcb) {
|
|
/* prevent using a deallocated pcb: free it from tcp_input later */
|
|
tcp_trigger_input_pcb_close();
|
|
} else {
|
|
memp_free(MEMP_TCP_PCB, pcb);
|
|
}
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
}
|
|
|
|
switch (pcb->state) {
|
|
case CLOSED:
|
|
/* Closing a pcb in the CLOSED state might seem erroneous,
|
|
* however, it is in this state once allocated and as yet unused
|
|
* and the user needs some way to free it should the need arise.
|
|
* Calling tcp_close() with a pcb that has already been closed, (i.e. twice)
|
|
* or for a pcb that has been used and then entered the CLOSED state
|
|
* is erroneous, but this should never happen as the pcb has in those cases
|
|
* been freed, and so any remaining handles are bogus. */
|
|
err = ERR_OK;
|
|
if (pcb->local_port != 0) {
|
|
TCP_RMV(&tcp_bound_pcbs, pcb);
|
|
}
|
|
memp_free(MEMP_TCP_PCB, pcb);
|
|
pcb = NULL;
|
|
break;
|
|
case LISTEN:
|
|
err = ERR_OK;
|
|
tcp_pcb_remove(&tcp_listen_pcbs.pcbs, pcb);
|
|
memp_free(MEMP_TCP_PCB_LISTEN, pcb);
|
|
pcb = NULL;
|
|
break;
|
|
case SYN_SENT:
|
|
err = ERR_OK;
|
|
TCP_PCB_REMOVE_ACTIVE(pcb);
|
|
memp_free(MEMP_TCP_PCB, pcb);
|
|
pcb = NULL;
|
|
MIB2_STATS_INC(mib2.tcpattemptfails);
|
|
break;
|
|
case SYN_RCVD:
|
|
err = tcp_send_fin(pcb);
|
|
if (err == ERR_OK) {
|
|
MIB2_STATS_INC(mib2.tcpattemptfails);
|
|
tcp_set_fin_wait_1(pcb);
|
|
}
|
|
break;
|
|
case ESTABLISHED:
|
|
err = tcp_send_fin(pcb);
|
|
if (err == ERR_OK) {
|
|
MIB2_STATS_INC(mib2.tcpestabresets);
|
|
tcp_set_fin_wait_1(pcb);
|
|
}
|
|
break;
|
|
case CLOSE_WAIT:
|
|
err = tcp_send_fin(pcb);
|
|
if (err == ERR_OK) {
|
|
MIB2_STATS_INC(mib2.tcpestabresets);
|
|
pcb->state = LAST_ACK;
|
|
}
|
|
break;
|
|
default:
|
|
/* Has already been closed, do nothing. */
|
|
err = ERR_OK;
|
|
pcb = NULL;
|
|
break;
|
|
}
|
|
|
|
if (pcb != NULL && err == ERR_OK) {
|
|
/* To ensure all data has been sent when tcp_close returns, we have
|
|
to make sure tcp_output doesn't fail.
|
|
Since we don't really have to ensure all data has been sent when tcp_close
|
|
returns (unsent data is sent from tcp timer functions, also), we don't care
|
|
for the return value of tcp_output for now. */
|
|
tcp_output(pcb);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Closes the connection held by the PCB.
|
|
*
|
|
* Listening pcbs are freed and may not be referenced any more.
|
|
* Connection pcbs are freed if not yet connected and may not be referenced
|
|
* any more. If a connection is established (at least SYN received or in
|
|
* a closing state), the connection is closed, and put in a closing state.
|
|
* The pcb is then automatically freed in tcp_slowtmr(). It is therefore
|
|
* unsafe to reference it (unless an error is returned).
|
|
*
|
|
* @param pcb the tcp_pcb to close
|
|
* @return ERR_OK if connection has been closed
|
|
* another err_t if closing failed and pcb is not freed
|
|
*/
|
|
err_t
|
|
tcp_close(struct tcp_pcb *pcb)
|
|
{
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_close: closing in "));
|
|
tcp_debug_print_state(pcb->state);
|
|
|
|
if (pcb->state != LISTEN) {
|
|
/* Set a flag not to receive any more data... */
|
|
pcb->flags |= TF_RXCLOSED;
|
|
}
|
|
/* ... and close */
|
|
return tcp_close_shutdown(pcb, 1);
|
|
}
|
|
|
|
/**
|
|
* Causes all or part of a full-duplex connection of this PCB to be shut down.
|
|
* This doesn't deallocate the PCB unless shutting down both sides!
|
|
* Shutting down both sides is the same as calling tcp_close, so if it succeds,
|
|
* the PCB should not be referenced any more.
|
|
*
|
|
* @param pcb PCB to shutdown
|
|
* @param shut_rx shut down receive side if this is != 0
|
|
* @param shut_tx shut down send side if this is != 0
|
|
* @return ERR_OK if shutdown succeeded (or the PCB has already been shut down)
|
|
* another err_t on error.
|
|
*/
|
|
err_t
|
|
tcp_shutdown(struct tcp_pcb *pcb, int shut_rx, int shut_tx)
|
|
{
|
|
if (pcb->state == LISTEN) {
|
|
return ERR_CONN;
|
|
}
|
|
if (shut_rx) {
|
|
/* shut down the receive side: set a flag not to receive any more data... */
|
|
pcb->flags |= TF_RXCLOSED;
|
|
if (shut_tx) {
|
|
/* shutting down the tx AND rx side is the same as closing for the raw API */
|
|
return tcp_close_shutdown(pcb, 1);
|
|
}
|
|
/* ... and free buffered data */
|
|
if (pcb->refused_data != NULL) {
|
|
pbuf_free(pcb->refused_data);
|
|
pcb->refused_data = NULL;
|
|
}
|
|
}
|
|
if (shut_tx) {
|
|
/* This can't happen twice since if it succeeds, the pcb's state is changed.
|
|
Only close in these states as the others directly deallocate the PCB */
|
|
switch (pcb->state) {
|
|
case SYN_RCVD:
|
|
case ESTABLISHED:
|
|
case CLOSE_WAIT:
|
|
return tcp_close_shutdown(pcb, (u8_t)shut_rx);
|
|
default:
|
|
/* Not (yet?) connected, cannot shutdown the TX side as that would bring us
|
|
into CLOSED state, where the PCB is deallocated. */
|
|
return ERR_CONN;
|
|
}
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
|
|
/**
|
|
* Abandons a connection and optionally sends a RST to the remote
|
|
* host. Deletes the local protocol control block. This is done when
|
|
* a connection is killed because of shortage of memory.
|
|
*
|
|
* @param pcb the tcp_pcb to abort
|
|
* @param reset boolean to indicate whether a reset should be sent
|
|
*/
|
|
void
|
|
tcp_abandon(struct tcp_pcb *pcb, int reset)
|
|
{
|
|
u32_t seqno, ackno;
|
|
#if LWIP_CALLBACK_API
|
|
tcp_err_fn errf;
|
|
#endif /* LWIP_CALLBACK_API */
|
|
void *errf_arg;
|
|
|
|
/* pcb->state LISTEN not allowed here */
|
|
LWIP_ASSERT("don't call tcp_abort/tcp_abandon for listen-pcbs",
|
|
pcb->state != LISTEN);
|
|
/* Figure out on which TCP PCB list we are, and remove us. If we
|
|
are in an active state, call the receive function associated with
|
|
the PCB with a NULL argument, and send an RST to the remote end. */
|
|
if (pcb->state == TIME_WAIT) {
|
|
tcp_pcb_remove(&tcp_tw_pcbs, pcb);
|
|
memp_free(MEMP_TCP_PCB, pcb);
|
|
} else {
|
|
int send_rst = 0;
|
|
u16_t local_port = 0;
|
|
seqno = pcb->snd_nxt;
|
|
ackno = pcb->rcv_nxt;
|
|
#if LWIP_CALLBACK_API
|
|
errf = pcb->errf;
|
|
#endif /* LWIP_CALLBACK_API */
|
|
errf_arg = pcb->callback_arg;
|
|
if ((pcb->state == CLOSED) && (pcb->local_port != 0)) {
|
|
/* bound, not yet opened */
|
|
TCP_RMV(&tcp_bound_pcbs, pcb);
|
|
} else {
|
|
send_rst = reset;
|
|
local_port = pcb->local_port;
|
|
TCP_PCB_REMOVE_ACTIVE(pcb);
|
|
}
|
|
if (pcb->unacked != NULL) {
|
|
tcp_segs_free(pcb->unacked);
|
|
}
|
|
if (pcb->unsent != NULL) {
|
|
tcp_segs_free(pcb->unsent);
|
|
}
|
|
#if TCP_QUEUE_OOSEQ
|
|
if (pcb->ooseq != NULL) {
|
|
tcp_segs_free(pcb->ooseq);
|
|
}
|
|
#endif /* TCP_QUEUE_OOSEQ */
|
|
if (send_rst) {
|
|
LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_abandon: sending RST\n"));
|
|
tcp_rst(seqno, ackno, &pcb->local_ip, &pcb->remote_ip, local_port, pcb->remote_port);
|
|
}
|
|
memp_free(MEMP_TCP_PCB, pcb);
|
|
TCP_EVENT_ERR(errf, errf_arg, ERR_ABRT);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Aborts the connection by sending a RST (reset) segment to the remote
|
|
* host. The pcb is deallocated. This function never fails.
|
|
*
|
|
* ATTENTION: When calling this from one of the TCP callbacks, make
|
|
* sure you always return ERR_ABRT (and never return ERR_ABRT otherwise
|
|
* or you will risk accessing deallocated memory or memory leaks!
|
|
*
|
|
* @param pcb the tcp pcb to abort
|
|
*/
|
|
void
|
|
tcp_abort(struct tcp_pcb *pcb)
|
|
{
|
|
tcp_abandon(pcb, 1);
|
|
}
|
|
|
|
/**
|
|
* Binds the connection to a local port number and IP address. If the
|
|
* IP address is not given (i.e., ipaddr == NULL), the IP address of
|
|
* the outgoing network interface is used instead.
|
|
*
|
|
* @param pcb the tcp_pcb to bind (no check is done whether this pcb is
|
|
* already bound!)
|
|
* @param ipaddr the local ip address to bind to (use IP_ADDR_ANY to bind
|
|
* to any local address
|
|
* @param port the local port to bind to
|
|
* @return ERR_USE if the port is already in use
|
|
* ERR_VAL if bind failed because the PCB is not in a valid state
|
|
* ERR_OK if bound
|
|
*/
|
|
err_t
|
|
tcp_bind(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port)
|
|
{
|
|
int i;
|
|
int max_pcb_list = NUM_TCP_PCB_LISTS;
|
|
struct tcp_pcb *cpcb;
|
|
|
|
#if LWIP_IPV4
|
|
/* Don't propagate NULL pointer (IPv4 ANY) to subsequent functions */
|
|
if (ipaddr == NULL) {
|
|
ipaddr = IP_ADDR_ANY;
|
|
}
|
|
#endif /* LWIP_IPV4 */
|
|
|
|
/* still need to check for ipaddr == NULL in IPv6 only case */
|
|
if ((pcb == NULL) || (ipaddr == NULL) || !IP_ADDR_PCB_VERSION_MATCH_EXACT(pcb, ipaddr)) {
|
|
return ERR_VAL;
|
|
}
|
|
|
|
LWIP_ERROR("tcp_bind: can only bind in state CLOSED", pcb->state == CLOSED, return ERR_VAL);
|
|
|
|
#if SO_REUSE
|
|
/* Unless the REUSEADDR flag is set,
|
|
we have to check the pcbs in TIME-WAIT state, also.
|
|
We do not dump TIME_WAIT pcb's; they can still be matched by incoming
|
|
packets using both local and remote IP addresses and ports to distinguish.
|
|
*/
|
|
if (ip_get_option(pcb, SOF_REUSEADDR)) {
|
|
max_pcb_list = NUM_TCP_PCB_LISTS_NO_TIME_WAIT;
|
|
}
|
|
#endif /* SO_REUSE */
|
|
|
|
if (port == 0) {
|
|
port = tcp_new_port();
|
|
if (port == 0) {
|
|
return ERR_BUF;
|
|
}
|
|
} else {
|
|
/* Check if the address already is in use (on all lists) */
|
|
for (i = 0; i < max_pcb_list; i++) {
|
|
for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
|
|
if (cpcb->local_port == port) {
|
|
#if SO_REUSE
|
|
/* Omit checking for the same port if both pcbs have REUSEADDR set.
|
|
For SO_REUSEADDR, the duplicate-check for a 5-tuple is done in
|
|
tcp_connect. */
|
|
if (!ip_get_option(pcb, SOF_REUSEADDR) ||
|
|
!ip_get_option(cpcb, SOF_REUSEADDR))
|
|
#endif /* SO_REUSE */
|
|
{
|
|
/* @todo: check accept_any_ip_version */
|
|
if ((IP_IS_V6(ipaddr) == IP_IS_V6_VAL(cpcb->local_ip)) &&
|
|
(ip_addr_isany(&cpcb->local_ip) ||
|
|
ip_addr_isany(ipaddr) ||
|
|
ip_addr_cmp(&cpcb->local_ip, ipaddr))) {
|
|
return ERR_USE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ip_addr_isany(ipaddr)) {
|
|
ip_addr_set(&pcb->local_ip, ipaddr);
|
|
}
|
|
pcb->local_port = port;
|
|
TCP_REG(&tcp_bound_pcbs, pcb);
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_bind: bind to port %"U16_F"\n", port));
|
|
return ERR_OK;
|
|
}
|
|
#if LWIP_CALLBACK_API
|
|
/**
|
|
* Default accept callback if no accept callback is specified by the user.
|
|
*/
|
|
static err_t
|
|
tcp_accept_null(void *arg, struct tcp_pcb *pcb, err_t err)
|
|
{
|
|
LWIP_UNUSED_ARG(arg);
|
|
LWIP_UNUSED_ARG(err);
|
|
|
|
tcp_abort(pcb);
|
|
|
|
return ERR_ABRT;
|
|
}
|
|
#endif /* LWIP_CALLBACK_API */
|
|
|
|
/**
|
|
* Set the state of the connection to be LISTEN, which means that it
|
|
* is able to accept incoming connections. The protocol control block
|
|
* is reallocated in order to consume less memory. Setting the
|
|
* connection to LISTEN is an irreversible process.
|
|
*
|
|
* @param pcb the original tcp_pcb
|
|
* @param backlog the incoming connections queue limit
|
|
* @return tcp_pcb used for listening, consumes less memory.
|
|
*
|
|
* @note The original tcp_pcb is freed. This function therefore has to be
|
|
* called like this:
|
|
* tpcb = tcp_listen(tpcb);
|
|
*/
|
|
struct tcp_pcb *
|
|
tcp_listen_with_backlog(struct tcp_pcb *pcb, u8_t backlog)
|
|
{
|
|
struct tcp_pcb_listen *lpcb;
|
|
|
|
LWIP_UNUSED_ARG(backlog);
|
|
LWIP_ERROR("tcp_listen: pcb already connected", pcb->state == CLOSED, return NULL);
|
|
|
|
/* already listening? */
|
|
if (pcb->state == LISTEN) {
|
|
return pcb;
|
|
}
|
|
#if SO_REUSE
|
|
if (ip_get_option(pcb, SOF_REUSEADDR)) {
|
|
/* Since SOF_REUSEADDR allows reusing a local address before the pcb's usage
|
|
is declared (listen-/connection-pcb), we have to make sure now that
|
|
this port is only used once for every local IP. */
|
|
for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
|
|
if ((lpcb->local_port == pcb->local_port) &&
|
|
ip_addr_cmp(&lpcb->local_ip, &pcb->local_ip)) {
|
|
/* this address/port is already used */
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
#endif /* SO_REUSE */
|
|
lpcb = (struct tcp_pcb_listen *)memp_malloc(MEMP_TCP_PCB_LISTEN);
|
|
if (lpcb == NULL) {
|
|
return NULL;
|
|
}
|
|
lpcb->callback_arg = pcb->callback_arg;
|
|
lpcb->local_port = pcb->local_port;
|
|
lpcb->state = LISTEN;
|
|
lpcb->prio = pcb->prio;
|
|
lpcb->so_options = pcb->so_options;
|
|
lpcb->ttl = pcb->ttl;
|
|
lpcb->tos = pcb->tos;
|
|
#if LWIP_IPV4 && LWIP_IPV6
|
|
IP_SET_TYPE_VAL(lpcb->remote_ip, pcb->local_ip.type);
|
|
#endif /* LWIP_IPV4 && LWIP_IPV6 */
|
|
ip_addr_copy(lpcb->local_ip, pcb->local_ip);
|
|
if (pcb->local_port != 0) {
|
|
TCP_RMV(&tcp_bound_pcbs, pcb);
|
|
}
|
|
memp_free(MEMP_TCP_PCB, pcb);
|
|
#if LWIP_CALLBACK_API
|
|
lpcb->accept = tcp_accept_null;
|
|
#endif /* LWIP_CALLBACK_API */
|
|
#if TCP_LISTEN_BACKLOG
|
|
lpcb->accepts_pending = 0;
|
|
tcp_backlog_set(lpcb, backlog);
|
|
#endif /* TCP_LISTEN_BACKLOG */
|
|
TCP_REG(&tcp_listen_pcbs.pcbs, (struct tcp_pcb *)lpcb);
|
|
return (struct tcp_pcb *)lpcb;
|
|
}
|
|
|
|
/**
|
|
* Update the state that tracks the available window space to advertise.
|
|
*
|
|
* Returns how much extra window would be advertised if we sent an
|
|
* update now.
|
|
*/
|
|
u32_t tcp_update_rcv_ann_wnd(struct tcp_pcb *pcb)
|
|
{
|
|
u32_t new_right_edge = pcb->rcv_nxt + pcb->rcv_wnd;
|
|
|
|
if (TCP_SEQ_GEQ(new_right_edge, pcb->rcv_ann_right_edge + LWIP_MIN((TCP_WND(pcb) / 2), pcb->mss))) {
|
|
/* we can advertise more window */
|
|
pcb->rcv_ann_wnd = pcb->rcv_wnd;
|
|
return new_right_edge - pcb->rcv_ann_right_edge;
|
|
} else {
|
|
if (TCP_SEQ_GT(pcb->rcv_nxt, pcb->rcv_ann_right_edge)) {
|
|
/* Can happen due to other end sending out of advertised window,
|
|
* but within actual available (but not yet advertised) window */
|
|
pcb->rcv_ann_wnd = 0;
|
|
} else {
|
|
/* keep the right edge of window constant */
|
|
u32_t new_rcv_ann_wnd = pcb->rcv_ann_right_edge - pcb->rcv_nxt;
|
|
#if !LWIP_WND_SCALE
|
|
LWIP_ASSERT("new_rcv_ann_wnd <= 0xffff", new_rcv_ann_wnd <= 0xffff);
|
|
#endif
|
|
pcb->rcv_ann_wnd = (tcpwnd_size_t)new_rcv_ann_wnd;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function should be called by the application when it has
|
|
* processed the data. The purpose is to advertise a larger window
|
|
* when the data has been processed.
|
|
*
|
|
* @param pcb the tcp_pcb for which data is read
|
|
* @param len the amount of bytes that have been read by the application
|
|
*/
|
|
void
|
|
tcp_recved(struct tcp_pcb *pcb, u16_t len)
|
|
{
|
|
int wnd_inflation;
|
|
|
|
/* pcb->state LISTEN not allowed here */
|
|
LWIP_ASSERT("don't call tcp_recved for listen-pcbs",
|
|
pcb->state != LISTEN);
|
|
|
|
pcb->rcv_wnd += len;
|
|
if (pcb->rcv_wnd > TCP_WND_MAX(pcb)) {
|
|
pcb->rcv_wnd = TCP_WND_MAX(pcb);
|
|
} else if (pcb->rcv_wnd == 0) {
|
|
/* rcv_wnd overflowed */
|
|
if ((pcb->state == CLOSE_WAIT) || (pcb->state == LAST_ACK)) {
|
|
/* In passive close, we allow this, since the FIN bit is added to rcv_wnd
|
|
by the stack itself, since it is not mandatory for an application
|
|
to call tcp_recved() for the FIN bit, but e.g. the netconn API does so. */
|
|
pcb->rcv_wnd = TCP_WND_MAX(pcb);
|
|
} else {
|
|
LWIP_ASSERT("tcp_recved: len wrapped rcv_wnd\n", 0);
|
|
}
|
|
}
|
|
|
|
wnd_inflation = tcp_update_rcv_ann_wnd(pcb);
|
|
|
|
/* If the change in the right edge of window is significant (default
|
|
* watermark is TCP_WND(pcb)/4), then send an explicit update now.
|
|
* Otherwise wait for a packet to be sent in the normal course of
|
|
* events (or more window to be available later) */
|
|
if (wnd_inflation >= TCP_WND_UPDATE_THRESHOLD(pcb)) {
|
|
tcp_ack_now(pcb);
|
|
tcp_output(pcb);
|
|
}
|
|
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_recved: received %"U16_F" bytes, wnd %"TCPWNDSIZE_F" (%"TCPWNDSIZE_F").\n",
|
|
len, pcb->rcv_wnd, TCP_WND_MAX(pcb) - pcb->rcv_wnd));
|
|
}
|
|
|
|
/**
|
|
* Allocate a new local TCP port.
|
|
*
|
|
* @return a new (free) local TCP port number
|
|
*/
|
|
static u16_t
|
|
tcp_new_port(void)
|
|
{
|
|
u8_t i;
|
|
u16_t n = 0;
|
|
struct tcp_pcb *pcb;
|
|
|
|
again:
|
|
|
|
#if ESP_RANDOM_TCP_PORT
|
|
tcp_port = system_get_time();
|
|
if (tcp_port < 0)
|
|
tcp_port = LWIP_RAND() - tcp_port;
|
|
tcp_port %= TCP_LOCAL_PORT_RANGE_START;
|
|
#else
|
|
if (tcp_port++ == TCP_LOCAL_PORT_RANGE_END) {
|
|
tcp_port = TCP_LOCAL_PORT_RANGE_START;
|
|
}
|
|
#endif
|
|
|
|
/* Check all PCB lists. */
|
|
for (i = 0; i < NUM_TCP_PCB_LISTS; i++) {
|
|
for (pcb = *tcp_pcb_lists[i]; pcb != NULL; pcb = pcb->next) {
|
|
if (pcb->local_port == tcp_port) {
|
|
if (++n > (TCP_LOCAL_PORT_RANGE_END - TCP_LOCAL_PORT_RANGE_START)) {
|
|
return 0;
|
|
}
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
return tcp_port;
|
|
}
|
|
|
|
/**
|
|
* Connects to another host. The function given as the "connected"
|
|
* argument will be called when the connection has been established.
|
|
*
|
|
* @param pcb the tcp_pcb used to establish the connection
|
|
* @param ipaddr the remote ip address to connect to
|
|
* @param port the remote tcp port to connect to
|
|
* @param connected callback function to call when connected (on error,
|
|
the err calback will be called)
|
|
* @return ERR_VAL if invalid arguments are given
|
|
* ERR_OK if connect request has been sent
|
|
* other err_t values if connect request couldn't be sent
|
|
*/
|
|
err_t
|
|
tcp_connect(struct tcp_pcb *pcb, const ip_addr_t *ipaddr, u16_t port,
|
|
tcp_connected_fn connected)
|
|
{
|
|
err_t ret;
|
|
u32_t iss;
|
|
u16_t old_local_port;
|
|
|
|
if ((pcb == NULL) || (ipaddr == NULL) || !IP_ADDR_PCB_VERSION_MATCH_EXACT(pcb, ipaddr)) {
|
|
return ERR_VAL;
|
|
}
|
|
|
|
LWIP_ERROR("tcp_connect: can only connect from state CLOSED", pcb->state == CLOSED, return ERR_ISCONN);
|
|
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_connect to port %"U16_F"\n", port));
|
|
ip_addr_set(&pcb->remote_ip, ipaddr);
|
|
pcb->remote_port = port;
|
|
|
|
/* check if we have a route to the remote host */
|
|
if (ip_addr_isany(&pcb->local_ip)) {
|
|
/* no local IP address set, yet. */
|
|
struct netif *netif;
|
|
const ip_addr_t *local_ip;
|
|
ip_route_get_local_ip(&pcb->local_ip, &pcb->remote_ip, netif, local_ip);
|
|
if ((netif == NULL) || (local_ip == NULL)) {
|
|
/* Don't even try to send a SYN packet if we have no route
|
|
since that will fail. */
|
|
return ERR_RTE;
|
|
}
|
|
/* Use the address as local address of the pcb. */
|
|
ip_addr_copy(pcb->local_ip, *local_ip);
|
|
}
|
|
|
|
old_local_port = pcb->local_port;
|
|
if (pcb->local_port == 0) {
|
|
pcb->local_port = tcp_new_port();
|
|
if (pcb->local_port == 0) {
|
|
return ERR_BUF;
|
|
}
|
|
} else {
|
|
#if SO_REUSE
|
|
if (ip_get_option(pcb, SOF_REUSEADDR)) {
|
|
/* Since SOF_REUSEADDR allows reusing a local address, we have to make sure
|
|
now that the 5-tuple is unique. */
|
|
struct tcp_pcb *cpcb;
|
|
int i;
|
|
/* Don't check listen- and bound-PCBs, check active- and TIME-WAIT PCBs. */
|
|
for (i = 2; i < NUM_TCP_PCB_LISTS; i++) {
|
|
for (cpcb = *tcp_pcb_lists[i]; cpcb != NULL; cpcb = cpcb->next) {
|
|
if ((cpcb->local_port == pcb->local_port) &&
|
|
(cpcb->remote_port == port) &&
|
|
ip_addr_cmp(&cpcb->local_ip, &pcb->local_ip) &&
|
|
ip_addr_cmp(&cpcb->remote_ip, ipaddr)) {
|
|
/* linux returns EISCONN here, but ERR_USE should be OK for us */
|
|
return ERR_USE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* SO_REUSE */
|
|
}
|
|
|
|
iss = tcp_next_iss();
|
|
pcb->rcv_nxt = 0;
|
|
pcb->snd_nxt = iss;
|
|
pcb->lastack = iss - 1;
|
|
pcb->snd_lbb = iss - 1;
|
|
/* Start with a window that does not need scaling. When window scaling is
|
|
enabled and used, the window is enlarged when both sides agree on scaling. */
|
|
pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND(pcb));
|
|
pcb->rcv_ann_right_edge = pcb->rcv_nxt;
|
|
pcb->snd_wnd = TCP_WND(pcb);
|
|
/* As initial send MSS, we use TCP_MSS but limit it to 536.
|
|
The send MSS is updated when an MSS option is received. */
|
|
pcb->mss = (TCP_MSS > 536) ? 536 : TCP_MSS;
|
|
#if TCP_CALCULATE_EFF_SEND_MSS
|
|
pcb->mss = tcp_eff_send_mss(pcb->mss, &pcb->local_ip, &pcb->remote_ip);
|
|
#endif /* TCP_CALCULATE_EFF_SEND_MSS */
|
|
pcb->cwnd = 1;
|
|
pcb->ssthresh = TCP_WND(pcb);
|
|
#if LWIP_CALLBACK_API
|
|
pcb->connected = connected;
|
|
#else /* LWIP_CALLBACK_API */
|
|
LWIP_UNUSED_ARG(connected);
|
|
#endif /* LWIP_CALLBACK_API */
|
|
|
|
/* Send a SYN together with the MSS option. */
|
|
ret = tcp_enqueue_flags(pcb, TCP_SYN);
|
|
if (ret == ERR_OK) {
|
|
/* SYN segment was enqueued, changed the pcbs state now */
|
|
pcb->state = SYN_SENT;
|
|
if (old_local_port != 0) {
|
|
TCP_RMV(&tcp_bound_pcbs, pcb);
|
|
}
|
|
TCP_REG_ACTIVE(pcb);
|
|
MIB2_STATS_INC(mib2.tcpactiveopens);
|
|
|
|
tcp_output(pcb);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called every 500 ms and implements the retransmission timer and the timer that
|
|
* removes PCBs that have been in TIME-WAIT for enough time. It also increments
|
|
* various timers such as the inactivity timer in each PCB.
|
|
*
|
|
* Automatically called from tcp_tmr().
|
|
*/
|
|
void
|
|
tcp_slowtmr(void)
|
|
{
|
|
struct tcp_pcb *pcb, *prev;
|
|
tcpwnd_size_t eff_wnd;
|
|
u8_t pcb_remove; /* flag if a PCB should be removed */
|
|
u8_t pcb_reset; /* flag if a RST should be sent when removing */
|
|
err_t err;
|
|
|
|
err = ERR_OK;
|
|
|
|
++tcp_ticks;
|
|
++tcp_timer_ctr;
|
|
|
|
tcp_slowtmr_start:
|
|
/* Steps through all of the active PCBs. */
|
|
prev = NULL;
|
|
pcb = tcp_active_pcbs;
|
|
if (pcb == NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: no active pcbs\n"));
|
|
}
|
|
while (pcb != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: processing active pcb\n"));
|
|
LWIP_ASSERT("tcp_slowtmr: active pcb->state != CLOSED\n", pcb->state != CLOSED);
|
|
LWIP_ASSERT("tcp_slowtmr: active pcb->state != LISTEN\n", pcb->state != LISTEN);
|
|
LWIP_ASSERT("tcp_slowtmr: active pcb->state != TIME-WAIT\n", pcb->state != TIME_WAIT);
|
|
if (pcb->last_timer == tcp_timer_ctr) {
|
|
/* skip this pcb, we have already processed it */
|
|
pcb = pcb->next;
|
|
continue;
|
|
}
|
|
pcb->last_timer = tcp_timer_ctr;
|
|
|
|
pcb_remove = 0;
|
|
pcb_reset = 0;
|
|
|
|
if (pcb->state == SYN_SENT && pcb->nrtx == TCP_SYNMAXRTX) {
|
|
++pcb_remove;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max SYN retries reached\n"));
|
|
}
|
|
else if (pcb->nrtx == TCP_MAXRTX) {
|
|
++pcb_remove;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: max DATA retries reached\n"));
|
|
} else {
|
|
if (pcb->persist_backoff > 0) {
|
|
|
|
/* If snd_wnd is zero, use persist timer to send 1 byte probes
|
|
* instead of using the standard retransmission mechanism. */
|
|
u8_t backoff_cnt = tcp_persist_backoff[pcb->persist_backoff-1];
|
|
|
|
if (pcb->persist_cnt < backoff_cnt) {
|
|
pcb->persist_cnt++;
|
|
}
|
|
if (pcb->persist_cnt >= backoff_cnt) {
|
|
if (tcp_zero_window_probe(pcb) == ERR_OK) {
|
|
pcb->persist_cnt = 0;
|
|
if (pcb->persist_backoff < sizeof(tcp_persist_backoff)) {
|
|
pcb->persist_backoff++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* Increase the retransmission timer if it is running */
|
|
if (pcb->rtime >= 0) {
|
|
++pcb->rtime;
|
|
}
|
|
|
|
if (pcb->unacked != NULL && pcb->rtime >= pcb->rto) {
|
|
/* Time for a retransmission. */
|
|
LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_slowtmr: rtime %"S16_F
|
|
" pcb->rto %"S16_F"\n",
|
|
pcb->rtime, pcb->rto));
|
|
|
|
ESP_STATS_TCP_PCB(pcb);
|
|
|
|
/* Double retransmission time-out unless we are trying to
|
|
* connect to somebody (i.e., we are in SYN_SENT). */
|
|
if (pcb->state != SYN_SENT) {
|
|
pcb->rto = ((pcb->sa >> 3) + pcb->sv) << tcp_backoff[pcb->nrtx];
|
|
}
|
|
|
|
/* Reset the retransmission timer. */
|
|
pcb->rtime = 0;
|
|
|
|
/* Reduce congestion window and ssthresh. */
|
|
eff_wnd = LWIP_MIN(pcb->cwnd, pcb->snd_wnd);
|
|
pcb->ssthresh = eff_wnd >> 1;
|
|
if (pcb->ssthresh < (tcpwnd_size_t)(pcb->mss << 1)) {
|
|
pcb->ssthresh = (pcb->mss << 1);
|
|
}
|
|
pcb->cwnd = pcb->mss;
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: cwnd %"TCPWNDSIZE_F
|
|
" ssthresh %"TCPWNDSIZE_F"\n",
|
|
pcb->cwnd, pcb->ssthresh));
|
|
|
|
/* The following needs to be called AFTER cwnd is set to one
|
|
mss - STJ */
|
|
tcp_rexmit_rto(pcb);
|
|
}
|
|
}
|
|
}
|
|
/* Check if this PCB has stayed too long in FIN-WAIT-2 */
|
|
#if ESP_LWIP
|
|
if ((pcb->state == FIN_WAIT_2) || (pcb->state == FIN_WAIT_1)) {
|
|
#else
|
|
if (pcb->state == FIN_WAIT_2) {
|
|
#endif
|
|
/* If this PCB is in FIN_WAIT_2 because of SHUT_WR don't let it time out. */
|
|
if (pcb->flags & TF_RXCLOSED) {
|
|
/* PCB was fully closed (either through close() or SHUT_RDWR):
|
|
normal FIN-WAIT timeout handling. */
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) >
|
|
TCP_FIN_WAIT_TIMEOUT / TCP_SLOW_INTERVAL) {
|
|
++pcb_remove;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in FIN-WAIT-2\n"));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if KEEPALIVE should be sent */
|
|
if (ip_get_option(pcb, SOF_KEEPALIVE) &&
|
|
((pcb->state == ESTABLISHED) ||
|
|
(pcb->state == CLOSE_WAIT))) {
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) >
|
|
(pcb->keep_idle + TCP_KEEP_DUR(pcb)) / TCP_SLOW_INTERVAL)
|
|
{
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: KEEPALIVE timeout. Aborting connection to "));
|
|
ip_addr_debug_print(TCP_DEBUG, &pcb->remote_ip);
|
|
LWIP_DEBUGF(TCP_DEBUG, ("\n"));
|
|
|
|
++pcb_remove;
|
|
++pcb_reset;
|
|
} else if ((u32_t)(tcp_ticks - pcb->tmr) >
|
|
(pcb->keep_idle + pcb->keep_cnt_sent * TCP_KEEP_INTVL(pcb))
|
|
/ TCP_SLOW_INTERVAL)
|
|
{
|
|
err = tcp_keepalive(pcb);
|
|
if (err == ERR_OK) {
|
|
pcb->keep_cnt_sent++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this PCB has queued out of sequence data, but has been
|
|
inactive for too long, will drop the data (it will eventually
|
|
be retransmitted). */
|
|
#if TCP_QUEUE_OOSEQ
|
|
if (pcb->ooseq != NULL &&
|
|
(u32_t)tcp_ticks - pcb->tmr >= pcb->rto * TCP_OOSEQ_TIMEOUT) {
|
|
tcp_segs_free(pcb->ooseq);
|
|
pcb->ooseq = NULL;
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_slowtmr: dropping OOSEQ queued data\n"));
|
|
}
|
|
#endif /* TCP_QUEUE_OOSEQ */
|
|
|
|
/* Check if this PCB has stayed too long in SYN-RCVD */
|
|
if (pcb->state == SYN_RCVD) {
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) >
|
|
TCP_SYN_RCVD_TIMEOUT / TCP_SLOW_INTERVAL) {
|
|
++pcb_remove;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in SYN-RCVD\n"));
|
|
}
|
|
}
|
|
|
|
/* Check if this PCB has stayed too long in LAST-ACK */
|
|
if (pcb->state == LAST_ACK) {
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
|
|
++pcb_remove;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: removing pcb stuck in LAST-ACK\n"));
|
|
}
|
|
}
|
|
|
|
/* If the PCB should be removed, do it. */
|
|
if (pcb_remove) {
|
|
struct tcp_pcb *pcb2;
|
|
tcp_err_fn err_fn;
|
|
void *err_arg;
|
|
tcp_pcb_purge(pcb);
|
|
/* Remove PCB from tcp_active_pcbs list. */
|
|
if (prev != NULL) {
|
|
LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_active_pcbs", pcb != tcp_active_pcbs);
|
|
prev->next = pcb->next;
|
|
} else {
|
|
/* This PCB was the first. */
|
|
LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_active_pcbs", tcp_active_pcbs == pcb);
|
|
tcp_active_pcbs = pcb->next;
|
|
}
|
|
|
|
if (pcb_reset) {
|
|
tcp_rst(pcb->snd_nxt, pcb->rcv_nxt, &pcb->local_ip, &pcb->remote_ip,
|
|
pcb->local_port, pcb->remote_port);
|
|
}
|
|
|
|
err_fn = pcb->errf;
|
|
err_arg = pcb->callback_arg;
|
|
pcb2 = pcb;
|
|
pcb = pcb->next;
|
|
memp_free(MEMP_TCP_PCB, pcb2);
|
|
|
|
tcp_active_pcbs_changed = 0;
|
|
TCP_EVENT_ERR(err_fn, err_arg, ERR_ABRT);
|
|
if (tcp_active_pcbs_changed) {
|
|
goto tcp_slowtmr_start;
|
|
}
|
|
} else {
|
|
/* get the 'next' element now and work with 'prev' below (in case of abort) */
|
|
prev = pcb;
|
|
pcb = pcb->next;
|
|
|
|
/* We check if we should poll the connection. */
|
|
++prev->polltmr;
|
|
if (prev->polltmr >= prev->pollinterval) {
|
|
prev->polltmr = 0;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_slowtmr: polling application\n"));
|
|
tcp_active_pcbs_changed = 0;
|
|
TCP_EVENT_POLL(prev, err);
|
|
if (tcp_active_pcbs_changed) {
|
|
goto tcp_slowtmr_start;
|
|
}
|
|
/* if err == ERR_ABRT, 'prev' is already deallocated */
|
|
if (err == ERR_OK) {
|
|
tcp_output(prev);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Steps through all of the TIME-WAIT PCBs. */
|
|
prev = NULL;
|
|
pcb = tcp_tw_pcbs;
|
|
while (pcb != NULL) {
|
|
LWIP_ASSERT("tcp_slowtmr: TIME-WAIT pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
|
|
pcb_remove = 0;
|
|
|
|
/* Check if this PCB has stayed long enough in TIME-WAIT */
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) > 2 * TCP_MSL / TCP_SLOW_INTERVAL) {
|
|
++pcb_remove;
|
|
}
|
|
|
|
/* If the PCB should be removed, do it. */
|
|
if (pcb_remove) {
|
|
struct tcp_pcb *pcb2;
|
|
tcp_pcb_purge(pcb);
|
|
/* Remove PCB from tcp_tw_pcbs list. */
|
|
if (prev != NULL) {
|
|
LWIP_ASSERT("tcp_slowtmr: middle tcp != tcp_tw_pcbs", pcb != tcp_tw_pcbs);
|
|
prev->next = pcb->next;
|
|
} else {
|
|
/* This PCB was the first. */
|
|
LWIP_ASSERT("tcp_slowtmr: first pcb == tcp_tw_pcbs", tcp_tw_pcbs == pcb);
|
|
tcp_tw_pcbs = pcb->next;
|
|
}
|
|
pcb2 = pcb;
|
|
pcb = pcb->next;
|
|
memp_free(MEMP_TCP_PCB, pcb2);
|
|
} else {
|
|
prev = pcb;
|
|
pcb = pcb->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Is called every TCP_FAST_INTERVAL (250 ms) and process data previously
|
|
* "refused" by upper layer (application) and sends delayed ACKs.
|
|
*
|
|
* Automatically called from tcp_tmr().
|
|
*/
|
|
void
|
|
tcp_fasttmr(void)
|
|
{
|
|
struct tcp_pcb *pcb;
|
|
|
|
++tcp_timer_ctr;
|
|
|
|
tcp_fasttmr_start:
|
|
pcb = tcp_active_pcbs;
|
|
|
|
while (pcb != NULL) {
|
|
if (pcb->last_timer != tcp_timer_ctr) {
|
|
struct tcp_pcb *next;
|
|
pcb->last_timer = tcp_timer_ctr;
|
|
/* send delayed ACKs */
|
|
if (pcb->flags & TF_ACK_DELAY) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_fasttmr: delayed ACK\n"));
|
|
tcp_ack_now(pcb);
|
|
tcp_output(pcb);
|
|
pcb->flags &= ~(TF_ACK_DELAY | TF_ACK_NOW);
|
|
}
|
|
|
|
next = pcb->next;
|
|
|
|
/* If there is data which was previously "refused" by upper layer */
|
|
if (pcb->refused_data != NULL) {
|
|
tcp_active_pcbs_changed = 0;
|
|
tcp_process_refused_data(pcb);
|
|
if (tcp_active_pcbs_changed) {
|
|
/* application callback has changed the pcb list: restart the loop */
|
|
goto tcp_fasttmr_start;
|
|
}
|
|
}
|
|
pcb = next;
|
|
} else {
|
|
pcb = pcb->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Call tcp_output for all active pcbs that have TF_NAGLEMEMERR set */
|
|
void
|
|
tcp_txnow(void)
|
|
{
|
|
struct tcp_pcb *pcb;
|
|
|
|
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
if (pcb->flags & TF_NAGLEMEMERR) {
|
|
tcp_output(pcb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Pass pcb->refused_data to the recv callback */
|
|
err_t
|
|
tcp_process_refused_data(struct tcp_pcb *pcb)
|
|
{
|
|
#if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
|
|
struct pbuf *rest;
|
|
while (pcb->refused_data != NULL)
|
|
#endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
|
|
{
|
|
err_t err;
|
|
u8_t refused_flags = pcb->refused_data->flags;
|
|
/* set pcb->refused_data to NULL in case the callback frees it and then
|
|
closes the pcb */
|
|
struct pbuf *refused_data = pcb->refused_data;
|
|
#if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
|
|
pbuf_split_64k(refused_data, &rest);
|
|
pcb->refused_data = rest;
|
|
#else /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
|
|
pcb->refused_data = NULL;
|
|
#endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
|
|
/* Notify again application with data previously received. */
|
|
LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: notify kept packet\n"));
|
|
TCP_EVENT_RECV(pcb, refused_data, ERR_OK, err);
|
|
if (err == ERR_OK) {
|
|
/* did refused_data include a FIN? */
|
|
if (refused_flags & PBUF_FLAG_TCP_FIN
|
|
#if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
|
|
&& (rest == NULL)
|
|
#endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
|
|
) {
|
|
/* correct rcv_wnd as the application won't call tcp_recved()
|
|
for the FIN's seqno */
|
|
if (pcb->rcv_wnd != TCP_WND_MAX(pcb)) {
|
|
pcb->rcv_wnd++;
|
|
}
|
|
TCP_EVENT_CLOSED(pcb, err);
|
|
if (err == ERR_ABRT) {
|
|
return ERR_ABRT;
|
|
}
|
|
}
|
|
} else if (err == ERR_ABRT) {
|
|
/* if err == ERR_ABRT, 'pcb' is already deallocated */
|
|
/* Drop incoming packets because pcb is "full" (only if the incoming
|
|
segment contains data). */
|
|
LWIP_DEBUGF(TCP_INPUT_DEBUG, ("tcp_input: drop incoming packets, because pcb is \"full\"\n"));
|
|
return ERR_ABRT;
|
|
} else {
|
|
/* data is still refused, pbuf is still valid (go on for ACK-only packets) */
|
|
#if TCP_QUEUE_OOSEQ && LWIP_WND_SCALE
|
|
if (rest != NULL) {
|
|
pbuf_cat(refused_data, rest);
|
|
}
|
|
#endif /* TCP_QUEUE_OOSEQ && LWIP_WND_SCALE */
|
|
pcb->refused_data = refused_data;
|
|
return ERR_INPROGRESS;
|
|
}
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
|
|
/**
|
|
* Deallocates a list of TCP segments (tcp_seg structures).
|
|
*
|
|
* @param seg tcp_seg list of TCP segments to free
|
|
*/
|
|
void
|
|
tcp_segs_free(struct tcp_seg *seg)
|
|
{
|
|
while (seg != NULL) {
|
|
struct tcp_seg *next = seg->next;
|
|
tcp_seg_free(seg);
|
|
seg = next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Frees a TCP segment (tcp_seg structure).
|
|
*
|
|
* @param seg single tcp_seg to free
|
|
*/
|
|
void
|
|
tcp_seg_free(struct tcp_seg *seg)
|
|
{
|
|
if (seg != NULL) {
|
|
if (seg->p != NULL) {
|
|
pbuf_free(seg->p);
|
|
#if TCP_DEBUG
|
|
seg->p = NULL;
|
|
#endif /* TCP_DEBUG */
|
|
}
|
|
memp_free(MEMP_TCP_SEG, seg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the priority of a connection.
|
|
*
|
|
* @param pcb the tcp_pcb to manipulate
|
|
* @param prio new priority
|
|
*/
|
|
void
|
|
tcp_setprio(struct tcp_pcb *pcb, u8_t prio)
|
|
{
|
|
pcb->prio = prio;
|
|
}
|
|
|
|
#if TCP_QUEUE_OOSEQ
|
|
/**
|
|
* Returns a copy of the given TCP segment.
|
|
* The pbuf and data are not copied, only the pointers
|
|
*
|
|
* @param seg the old tcp_seg
|
|
* @return a copy of seg
|
|
*/
|
|
struct tcp_seg *
|
|
tcp_seg_copy(struct tcp_seg *seg)
|
|
{
|
|
struct tcp_seg *cseg;
|
|
|
|
cseg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG);
|
|
if (cseg == NULL) {
|
|
return NULL;
|
|
}
|
|
SMEMCPY((u8_t *)cseg, (const u8_t *)seg, sizeof(struct tcp_seg));
|
|
pbuf_ref(cseg->p);
|
|
return cseg;
|
|
}
|
|
#endif /* TCP_QUEUE_OOSEQ */
|
|
|
|
#if LWIP_CALLBACK_API
|
|
/**
|
|
* Default receive callback that is called if the user didn't register
|
|
* a recv callback for the pcb.
|
|
*/
|
|
err_t
|
|
tcp_recv_null(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)
|
|
{
|
|
LWIP_UNUSED_ARG(arg);
|
|
if (p != NULL) {
|
|
tcp_recved(pcb, p->tot_len);
|
|
pbuf_free(p);
|
|
} else if (err == ERR_OK) {
|
|
return tcp_close(pcb);
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
#endif /* LWIP_CALLBACK_API */
|
|
|
|
/**
|
|
* Kills the oldest active connection that has the same or lower priority than
|
|
* 'prio'.
|
|
*
|
|
* @param prio minimum priority
|
|
*/
|
|
static void
|
|
tcp_kill_prio(u8_t prio)
|
|
{
|
|
struct tcp_pcb *pcb, *inactive;
|
|
u32_t inactivity;
|
|
u8_t mprio;
|
|
|
|
mprio = LWIP_MIN(TCP_PRIO_MAX, prio);
|
|
|
|
/* We kill the oldest active connection that has lower priority than prio. */
|
|
inactivity = 0;
|
|
inactive = NULL;
|
|
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
if (pcb->prio <= mprio &&
|
|
(u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
|
|
inactivity = tcp_ticks - pcb->tmr;
|
|
inactive = pcb;
|
|
mprio = pcb->prio;
|
|
}
|
|
}
|
|
if (inactive != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_prio: killing oldest PCB %p (%"S32_F")\n",
|
|
(void *)inactive, inactivity));
|
|
tcp_abort(inactive);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Kills the oldest connection that is in specific state.
|
|
* Called from tcp_alloc() for LAST_ACK and CLOSING if no more connections are available.
|
|
*/
|
|
static void
|
|
tcp_kill_state(enum tcp_state state)
|
|
{
|
|
struct tcp_pcb *pcb, *inactive;
|
|
u32_t inactivity;
|
|
|
|
LWIP_ASSERT("invalid state", (state == CLOSING) || (state == LAST_ACK));
|
|
|
|
inactivity = 0;
|
|
inactive = NULL;
|
|
/* Go through the list of active pcbs and get the oldest pcb that is in state
|
|
CLOSING/LAST_ACK. */
|
|
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
if (pcb->state == state) {
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
|
|
inactivity = tcp_ticks - pcb->tmr;
|
|
inactive = pcb;
|
|
}
|
|
}
|
|
}
|
|
if (inactive != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_closing: killing oldest %s PCB %p (%"S32_F")\n",
|
|
tcp_state_str[state], (void *)inactive, inactivity));
|
|
/* Don't send a RST, since no data is lost. */
|
|
tcp_abandon(inactive, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Kills the oldest connection that is in TIME_WAIT state.
|
|
* Called from tcp_alloc() if no more connections are available.
|
|
*/
|
|
static void
|
|
tcp_kill_timewait(void)
|
|
{
|
|
struct tcp_pcb *pcb, *inactive;
|
|
u32_t inactivity;
|
|
|
|
inactivity = 0;
|
|
inactive = NULL;
|
|
/* Go through the list of TIME_WAIT pcbs and get the oldest pcb. */
|
|
for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
if ((u32_t)(tcp_ticks - pcb->tmr) >= inactivity) {
|
|
inactivity = tcp_ticks - pcb->tmr;
|
|
inactive = pcb;
|
|
}
|
|
}
|
|
if (inactive != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_kill_timewait: killing oldest TIME-WAIT PCB %p (%"S32_F")\n",
|
|
(void *)inactive, inactivity));
|
|
tcp_abort(inactive);
|
|
}
|
|
}
|
|
|
|
#if ESP_LWIP
|
|
typedef struct {
|
|
u8_t time_wait;
|
|
u8_t closing;
|
|
u8_t fin_wait2;
|
|
u8_t last_ack;
|
|
u8_t fin_wait1;
|
|
u8_t listen;
|
|
u8_t bound;
|
|
u8_t total;
|
|
}tcp_pcb_num_t;
|
|
|
|
void tcp_pcb_num_cal(tcp_pcb_num_t *tcp_pcb_num)
|
|
{
|
|
struct tcp_pcb_listen *listen;
|
|
struct tcp_pcb *pcb;
|
|
|
|
if (!tcp_pcb_num){
|
|
return;
|
|
}
|
|
|
|
memset(tcp_pcb_num, 0, sizeof(*tcp_pcb_num));
|
|
for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
tcp_pcb_num->total ++;
|
|
tcp_pcb_num->time_wait ++;
|
|
}
|
|
|
|
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next){
|
|
tcp_pcb_num->total ++;
|
|
if (pcb->state == FIN_WAIT_2){
|
|
tcp_pcb_num->fin_wait2 ++;
|
|
} else if (pcb->state == LAST_ACK) {
|
|
tcp_pcb_num->last_ack ++;
|
|
} else if (pcb->state == CLOSING) {
|
|
tcp_pcb_num->closing ++;
|
|
} else if (pcb->state == FIN_WAIT_1){
|
|
tcp_pcb_num->fin_wait1 ++;
|
|
}
|
|
}
|
|
|
|
for (listen = tcp_listen_pcbs.listen_pcbs; listen != NULL; listen = listen->next){
|
|
tcp_pcb_num->total ++;
|
|
tcp_pcb_num->listen ++;
|
|
}
|
|
|
|
for (pcb = tcp_bound_pcbs; pcb != NULL; pcb = pcb->next){
|
|
tcp_pcb_num->total ++;
|
|
tcp_pcb_num->bound ++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* Allocate a new tcp_pcb structure.
|
|
*
|
|
* @param prio priority for the new pcb
|
|
* @return a new tcp_pcb that initially is in state CLOSED
|
|
*/
|
|
struct tcp_pcb *
|
|
tcp_alloc(u8_t prio)
|
|
{
|
|
struct tcp_pcb *pcb;
|
|
u32_t iss;
|
|
|
|
#if ESP_LWIP
|
|
tcp_pcb_num_t tcp_pcb_num;
|
|
|
|
tcp_pcb_num_cal(&tcp_pcb_num);
|
|
|
|
if (tcp_pcb_num.total >= MEMP_NUM_TCP_PCB){
|
|
if (tcp_pcb_num.time_wait > 0){
|
|
tcp_kill_timewait();
|
|
} else if (tcp_pcb_num.last_ack > 0){
|
|
tcp_kill_state(LAST_ACK);
|
|
} else if (tcp_pcb_num.closing > 0){
|
|
tcp_kill_state(CLOSING);
|
|
} else if (tcp_pcb_num.fin_wait2 > 0){
|
|
tcp_kill_state(FIN_WAIT_2);
|
|
} else if (tcp_pcb_num.fin_wait1 > 0){
|
|
tcp_kill_state(FIN_WAIT_1);
|
|
} else {
|
|
tcp_kill_prio(prio);
|
|
}
|
|
}
|
|
|
|
tcp_pcb_num_cal(&tcp_pcb_num);
|
|
if (tcp_pcb_num.total >= MEMP_NUM_TCP_PCB){
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: no available tcp pcb %d %d %d %d %d %d %d %d\n",
|
|
tcp_pcb_num.total, tcp_pcb_num.time_wait, tcp_pcb_num.last_ack, tcp_pcb_num.closing,
|
|
tcp_pcb_num.fin_wait2, tcp_pcb_num.fin_wait1, tcp_pcb_num.listen, tcp_pcb_num.bound));
|
|
return NULL;
|
|
}
|
|
|
|
#endif
|
|
|
|
pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
|
|
if (pcb == NULL) {
|
|
/* Try killing oldest connection in TIME-WAIT. */
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest TIME-WAIT connection\n"));
|
|
tcp_kill_timewait();
|
|
/* Try to allocate a tcp_pcb again. */
|
|
pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
|
|
if (pcb == NULL) {
|
|
/* Try killing oldest connection in LAST-ACK (these wouldn't go to TIME-WAIT). */
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest LAST-ACK connection\n"));
|
|
tcp_kill_state(LAST_ACK);
|
|
/* Try to allocate a tcp_pcb again. */
|
|
pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
|
|
if (pcb == NULL) {
|
|
/* Try killing oldest connection in CLOSING. */
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing off oldest CLOSING connection\n"));
|
|
tcp_kill_state(CLOSING);
|
|
/* Try to allocate a tcp_pcb again. */
|
|
pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
|
|
if (pcb == NULL) {
|
|
/* Try killing active connections with lower priority than the new one. */
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: killing connection with prio lower than %d\n", prio));
|
|
tcp_kill_prio(prio);
|
|
/* Try to allocate a tcp_pcb again. */
|
|
pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);
|
|
if (pcb != NULL) {
|
|
/* adjust err stats: memp_malloc failed multiple times before */
|
|
MEMP_STATS_DEC(err, MEMP_TCP_PCB);
|
|
}
|
|
}
|
|
if (pcb != NULL) {
|
|
/* adjust err stats: memp_malloc failed multiple times before */
|
|
MEMP_STATS_DEC(err, MEMP_TCP_PCB);
|
|
}
|
|
}
|
|
if (pcb != NULL) {
|
|
/* adjust err stats: memp_malloc failed multiple times before */
|
|
MEMP_STATS_DEC(err, MEMP_TCP_PCB);
|
|
}
|
|
}
|
|
if (pcb != NULL) {
|
|
/* adjust err stats: memp_malloc failed above */
|
|
MEMP_STATS_DEC(err, MEMP_TCP_PCB);
|
|
}
|
|
}
|
|
if (pcb != NULL) {
|
|
memset(pcb, 0, sizeof(struct tcp_pcb));
|
|
|
|
#if ESP_PER_SOC_TCP_WND
|
|
pcb->per_soc_tcp_wnd = TCP_WND_DEFAULT;
|
|
pcb->per_soc_tcp_snd_buf = TCP_SND_BUF_DEFAULT;
|
|
#endif
|
|
|
|
pcb->prio = prio;
|
|
pcb->snd_buf = TCP_SND_BUF_DEFAULT;
|
|
pcb->snd_queuelen = 0;
|
|
/* Start with a window that does not need scaling. When window scaling is
|
|
enabled and used, the window is enlarged when both sides agree on scaling. */
|
|
pcb->rcv_wnd = pcb->rcv_ann_wnd = TCPWND_MIN16(TCP_WND(pcb));
|
|
#if LWIP_WND_SCALE
|
|
/* snd_scale and rcv_scale are zero unless both sides agree to use scaling */
|
|
pcb->snd_scale = 0;
|
|
pcb->rcv_scale = 0;
|
|
#endif
|
|
pcb->tos = 0;
|
|
pcb->ttl = TCP_TTL;
|
|
/* As initial send MSS, we use TCP_MSS but limit it to 536.
|
|
The send MSS is updated when an MSS option is received. */
|
|
pcb->mss = (TCP_MSS > 536) ? 536 : TCP_MSS;
|
|
pcb->rto = 3000 / TCP_SLOW_INTERVAL;
|
|
pcb->sa = 0;
|
|
pcb->sv = 3000 / TCP_SLOW_INTERVAL;
|
|
pcb->rtime = -1;
|
|
pcb->cwnd = 1;
|
|
iss = tcp_next_iss();
|
|
pcb->snd_wl2 = iss;
|
|
pcb->snd_nxt = iss;
|
|
pcb->lastack = iss;
|
|
pcb->snd_lbb = iss;
|
|
pcb->tmr = tcp_ticks;
|
|
pcb->last_timer = tcp_timer_ctr;
|
|
pcb->polltmr = 0;
|
|
|
|
#if LWIP_CALLBACK_API
|
|
pcb->recv = tcp_recv_null;
|
|
#endif /* LWIP_CALLBACK_API */
|
|
|
|
/* Init KEEPALIVE timer */
|
|
pcb->keep_idle = TCP_KEEPIDLE_DEFAULT;
|
|
|
|
#if LWIP_TCP_KEEPALIVE
|
|
pcb->keep_intvl = TCP_KEEPINTVL_DEFAULT;
|
|
pcb->keep_cnt = TCP_KEEPCNT_DEFAULT;
|
|
#endif /* LWIP_TCP_KEEPALIVE */
|
|
|
|
pcb->keep_cnt_sent = 0;
|
|
}
|
|
|
|
return pcb;
|
|
}
|
|
|
|
/**
|
|
* Creates a new TCP protocol control block but doesn't place it on
|
|
* any of the TCP PCB lists.
|
|
* The pcb is not put on any list until binding using tcp_bind().
|
|
*
|
|
* @internal: Maybe there should be a idle TCP PCB list where these
|
|
* PCBs are put on. Port reservation using tcp_bind() is implemented but
|
|
* allocated pcbs that are not bound can't be killed automatically if wanting
|
|
* to allocate a pcb with higher prio (@see tcp_kill_prio())
|
|
*
|
|
* @return a new tcp_pcb that initially is in state CLOSED
|
|
*/
|
|
struct tcp_pcb *
|
|
tcp_new(void)
|
|
{
|
|
return tcp_alloc(TCP_PRIO_NORMAL);
|
|
}
|
|
|
|
/**
|
|
* Creates a new TCP protocol control block but doesn't
|
|
* place it on any of the TCP PCB lists.
|
|
* The pcb is not put on any list until binding using tcp_bind().
|
|
*
|
|
* @param type IP address type, see IPADDR_TYPE_XX definitions.
|
|
* @return a new tcp_pcb that initially is in state CLOSED
|
|
*/
|
|
struct tcp_pcb *
|
|
tcp_new_ip_type(u8_t type)
|
|
{
|
|
struct tcp_pcb * pcb;
|
|
pcb = tcp_alloc(TCP_PRIO_NORMAL);
|
|
#if LWIP_IPV4 && LWIP_IPV6
|
|
if(pcb != NULL) {
|
|
IP_SET_TYPE_VAL(pcb->local_ip, type);
|
|
IP_SET_TYPE_VAL(pcb->remote_ip, type);
|
|
}
|
|
#else
|
|
LWIP_UNUSED_ARG(type);
|
|
#endif /* LWIP_IPV4 && LWIP_IPV6 */
|
|
return pcb;
|
|
}
|
|
|
|
/**
|
|
* Used to specify the argument that should be passed callback
|
|
* functions.
|
|
*
|
|
* @param pcb tcp_pcb to set the callback argument
|
|
* @param arg void pointer argument to pass to callback functions
|
|
*/
|
|
void
|
|
tcp_arg(struct tcp_pcb *pcb, void *arg)
|
|
{
|
|
/* This function is allowed to be called for both listen pcbs and
|
|
connection pcbs. */
|
|
pcb->callback_arg = arg;
|
|
}
|
|
#if LWIP_CALLBACK_API
|
|
|
|
/**
|
|
* Used to specify the function that should be called when a TCP
|
|
* connection receives data.
|
|
*
|
|
* @param pcb tcp_pcb to set the recv callback
|
|
* @param recv callback function to call for this pcb when data is received
|
|
*/
|
|
void
|
|
tcp_recv(struct tcp_pcb *pcb, tcp_recv_fn recv)
|
|
{
|
|
LWIP_ASSERT("invalid socket state for recv callback", pcb->state != LISTEN);
|
|
pcb->recv = recv;
|
|
}
|
|
|
|
/**
|
|
* Used to specify the function that should be called when TCP data
|
|
* has been successfully delivered to the remote host.
|
|
*
|
|
* @param pcb tcp_pcb to set the sent callback
|
|
* @param sent callback function to call for this pcb when data is successfully sent
|
|
*/
|
|
void
|
|
tcp_sent(struct tcp_pcb *pcb, tcp_sent_fn sent)
|
|
{
|
|
LWIP_ASSERT("invalid socket state for sent callback", pcb->state != LISTEN);
|
|
pcb->sent = sent;
|
|
}
|
|
|
|
/**
|
|
* Used to specify the function that should be called when a fatal error
|
|
* has occurred on the connection.
|
|
*
|
|
* @param pcb tcp_pcb to set the err callback
|
|
* @param err callback function to call for this pcb when a fatal error
|
|
* has occurred on the connection
|
|
*/
|
|
void
|
|
tcp_err(struct tcp_pcb *pcb, tcp_err_fn err)
|
|
{
|
|
LWIP_ASSERT("invalid socket state for err callback", pcb->state != LISTEN);
|
|
pcb->errf = err;
|
|
}
|
|
|
|
/**
|
|
* Used for specifying the function that should be called when a
|
|
* LISTENing connection has been connected to another host.
|
|
*
|
|
* @param pcb tcp_pcb to set the accept callback
|
|
* @param accept callback function to call for this pcb when LISTENing
|
|
* connection has been connected to another host
|
|
*/
|
|
void
|
|
tcp_accept(struct tcp_pcb *pcb, tcp_accept_fn accept)
|
|
{
|
|
/* This function is allowed to be called for both listen pcbs and
|
|
connection pcbs. */
|
|
pcb->accept = accept;
|
|
}
|
|
#endif /* LWIP_CALLBACK_API */
|
|
|
|
|
|
/**
|
|
* Used to specify the function that should be called periodically
|
|
* from TCP. The interval is specified in terms of the TCP coarse
|
|
* timer interval, which is called twice a second.
|
|
*
|
|
*/
|
|
void
|
|
tcp_poll(struct tcp_pcb *pcb, tcp_poll_fn poll, u8_t interval)
|
|
{
|
|
LWIP_ASSERT("invalid socket state for poll", pcb->state != LISTEN);
|
|
#if LWIP_CALLBACK_API
|
|
pcb->poll = poll;
|
|
#else /* LWIP_CALLBACK_API */
|
|
LWIP_UNUSED_ARG(poll);
|
|
#endif /* LWIP_CALLBACK_API */
|
|
pcb->pollinterval = interval;
|
|
}
|
|
|
|
/**
|
|
* Purges a TCP PCB. Removes any buffered data and frees the buffer memory
|
|
* (pcb->ooseq, pcb->unsent and pcb->unacked are freed).
|
|
*
|
|
* @param pcb tcp_pcb to purge. The pcb itself is not deallocated!
|
|
*/
|
|
void
|
|
tcp_pcb_purge(struct tcp_pcb *pcb)
|
|
{
|
|
if (pcb->state != CLOSED &&
|
|
pcb->state != TIME_WAIT &&
|
|
pcb->state != LISTEN) {
|
|
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge\n"));
|
|
|
|
#if TCP_LISTEN_BACKLOG
|
|
if (pcb->state == SYN_RCVD) {
|
|
/* Need to find the corresponding listen_pcb and decrease its accepts_pending */
|
|
struct tcp_pcb_listen *lpcb;
|
|
LWIP_ASSERT("tcp_pcb_purge: pcb->state == SYN_RCVD but tcp_listen_pcbs is NULL",
|
|
tcp_listen_pcbs.listen_pcbs != NULL);
|
|
for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = lpcb->next) {
|
|
if ((lpcb->local_port == pcb->local_port) &&
|
|
(IP_IS_V6_VAL(pcb->local_ip) == IP_IS_V6_VAL(lpcb->local_ip)) &&
|
|
(ip_addr_isany(&lpcb->local_ip) ||
|
|
ip_addr_cmp(&pcb->local_ip, &lpcb->local_ip))) {
|
|
/* port and address of the listen pcb match the timed-out pcb */
|
|
LWIP_ASSERT("tcp_pcb_purge: listen pcb does not have accepts pending",
|
|
lpcb->accepts_pending > 0);
|
|
lpcb->accepts_pending--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif /* TCP_LISTEN_BACKLOG */
|
|
|
|
|
|
if (pcb->refused_data != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->refused_data\n"));
|
|
pbuf_free(pcb->refused_data);
|
|
pcb->refused_data = NULL;
|
|
}
|
|
if (pcb->unsent != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: not all data sent\n"));
|
|
}
|
|
if (pcb->unacked != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->unacked\n"));
|
|
}
|
|
#if TCP_QUEUE_OOSEQ
|
|
if (pcb->ooseq != NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_pcb_purge: data left on ->ooseq\n"));
|
|
}
|
|
tcp_segs_free(pcb->ooseq);
|
|
pcb->ooseq = NULL;
|
|
#endif /* TCP_QUEUE_OOSEQ */
|
|
|
|
/* Stop the retransmission timer as it will expect data on unacked
|
|
queue if it fires */
|
|
pcb->rtime = -1;
|
|
|
|
tcp_segs_free(pcb->unsent);
|
|
tcp_segs_free(pcb->unacked);
|
|
pcb->unacked = pcb->unsent = NULL;
|
|
#if TCP_OVERSIZE
|
|
pcb->unsent_oversize = 0;
|
|
#endif /* TCP_OVERSIZE */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Purges the PCB and removes it from a PCB list. Any delayed ACKs are sent first.
|
|
*
|
|
* @param pcblist PCB list to purge.
|
|
* @param pcb tcp_pcb to purge. The pcb itself is NOT deallocated!
|
|
*/
|
|
void
|
|
tcp_pcb_remove(struct tcp_pcb **pcblist, struct tcp_pcb *pcb)
|
|
{
|
|
TCP_RMV(pcblist, pcb);
|
|
|
|
tcp_pcb_purge(pcb);
|
|
|
|
/* if there is an outstanding delayed ACKs, send it */
|
|
if (pcb->state != TIME_WAIT &&
|
|
pcb->state != LISTEN &&
|
|
pcb->flags & TF_ACK_DELAY) {
|
|
pcb->flags |= TF_ACK_NOW;
|
|
tcp_output(pcb);
|
|
}
|
|
|
|
if (pcb->state != LISTEN) {
|
|
LWIP_ASSERT("unsent segments leaking", pcb->unsent == NULL);
|
|
LWIP_ASSERT("unacked segments leaking", pcb->unacked == NULL);
|
|
#if TCP_QUEUE_OOSEQ
|
|
LWIP_ASSERT("ooseq segments leaking", pcb->ooseq == NULL);
|
|
#endif /* TCP_QUEUE_OOSEQ */
|
|
}
|
|
|
|
pcb->state = CLOSED;
|
|
/* reset the local port to prevent the pcb from being 'bound' */
|
|
pcb->local_port = 0;
|
|
|
|
LWIP_ASSERT("tcp_pcb_remove: tcp_pcbs_sane()", tcp_pcbs_sane());
|
|
}
|
|
|
|
/**
|
|
* Calculates a new initial sequence number for new connections.
|
|
*
|
|
* @return u32_t pseudo random sequence number
|
|
*/
|
|
u32_t
|
|
tcp_next_iss(void)
|
|
{
|
|
static u32_t iss = 6510;
|
|
|
|
iss += tcp_ticks; /* XXX */
|
|
return iss;
|
|
}
|
|
|
|
#if TCP_CALCULATE_EFF_SEND_MSS
|
|
/**
|
|
* Calculates the effective send mss that can be used for a specific IP address
|
|
* by using ip_route to determine the netif used to send to the address and
|
|
* calculating the minimum of TCP_MSS and that netif's mtu (if set).
|
|
*/
|
|
u16_t
|
|
tcp_eff_send_mss_impl(u16_t sendmss, const ip_addr_t *dest
|
|
#if LWIP_IPV6 || LWIP_IPV4_SRC_ROUTING
|
|
, const ip_addr_t *src
|
|
#endif /* LWIP_IPV6 || LWIP_IPV4_SRC_ROUTING */
|
|
)
|
|
{
|
|
u16_t mss_s;
|
|
struct netif *outif;
|
|
s16_t mtu;
|
|
|
|
outif = ip_route(src, dest);
|
|
#if LWIP_IPV6
|
|
#if LWIP_IPV4
|
|
if (IP_IS_V6(dest))
|
|
#endif /* LWIP_IPV4 */
|
|
{
|
|
/* First look in destination cache, to see if there is a Path MTU. */
|
|
mtu = nd6_get_destination_mtu(ip_2_ip6(dest), outif);
|
|
}
|
|
#if LWIP_IPV4
|
|
else
|
|
#endif /* LWIP_IPV4 */
|
|
#endif /* LWIP_IPV6 */
|
|
#if LWIP_IPV4
|
|
{
|
|
if (outif == NULL) {
|
|
return sendmss;
|
|
}
|
|
mtu = outif->mtu;
|
|
}
|
|
#endif /* LWIP_IPV4 */
|
|
|
|
if (mtu != 0) {
|
|
#if LWIP_IPV6
|
|
#if LWIP_IPV4
|
|
if (IP_IS_V6(dest))
|
|
#endif /* LWIP_IPV4 */
|
|
{
|
|
mss_s = mtu - IP6_HLEN - TCP_HLEN;
|
|
}
|
|
#if LWIP_IPV4
|
|
else
|
|
#endif /* LWIP_IPV4 */
|
|
#endif /* LWIP_IPV6 */
|
|
#if LWIP_IPV4
|
|
{
|
|
mss_s = mtu - IP_HLEN - TCP_HLEN;
|
|
}
|
|
#endif /* LWIP_IPV4 */
|
|
/* RFC 1122, chap 4.2.2.6:
|
|
* Eff.snd.MSS = min(SendMSS+20, MMS_S) - TCPhdrsize - IPoptionsize
|
|
* We correct for TCP options in tcp_write(), and don't support IP options.
|
|
*/
|
|
sendmss = LWIP_MIN(sendmss, mss_s);
|
|
}
|
|
return sendmss;
|
|
}
|
|
#endif /* TCP_CALCULATE_EFF_SEND_MSS */
|
|
|
|
#if LWIP_IPV4
|
|
/** This function is called from netif.c when address is changed or netif is removed
|
|
*
|
|
* @param old_addr IPv4 address of the netif before change
|
|
* @param new_addr IPv4 address of the netif after change or NULL if netif has been removed
|
|
*/
|
|
void tcp_netif_ipv4_addr_changed(const ip4_addr_t* old_addr, const ip4_addr_t* new_addr)
|
|
{
|
|
struct tcp_pcb_listen *lpcb, *next;
|
|
|
|
if (!ip4_addr_isany(new_addr)) {
|
|
/* PCB bound to current local interface address? */
|
|
for (lpcb = tcp_listen_pcbs.listen_pcbs; lpcb != NULL; lpcb = next) {
|
|
next = lpcb->next;
|
|
/* Is this an IPv4 pcb? */
|
|
if (!IP_IS_V6_VAL(lpcb->local_ip)) {
|
|
/* PCB bound to current local interface address? */
|
|
if ((!(ip4_addr_isany(ip_2_ip4(&lpcb->local_ip)))) &&
|
|
(ip4_addr_cmp(ip_2_ip4(&lpcb->local_ip), old_addr))) {
|
|
/* The PCB is listening to the old ipaddr and
|
|
* is set to listen to the new one instead */
|
|
ip_addr_copy_from_ip4(lpcb->local_ip, *new_addr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* LWIP_IPV4 */
|
|
|
|
const char*
|
|
tcp_debug_state_str(enum tcp_state s)
|
|
{
|
|
return tcp_state_str[s];
|
|
}
|
|
|
|
#if TCP_DEBUG || TCP_INPUT_DEBUG || TCP_OUTPUT_DEBUG
|
|
/**
|
|
* Print a tcp header for debugging purposes.
|
|
*
|
|
* @param tcphdr pointer to a struct tcp_hdr
|
|
*/
|
|
void
|
|
tcp_debug_print(struct tcp_hdr *tcphdr)
|
|
{
|
|
LWIP_DEBUGF(TCP_DEBUG, ("TCP header:\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("| %5"U16_F" | %5"U16_F" | (src port, dest port)\n",
|
|
ntohs(tcphdr->src), ntohs(tcphdr->dest)));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (seq no)\n",
|
|
ntohl(tcphdr->seqno)));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("| %010"U32_F" | (ack no)\n",
|
|
ntohl(tcphdr->ackno)));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("| %2"U16_F" | |%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"%"U16_F"| %5"U16_F" | (hdrlen, flags (",
|
|
TCPH_HDRLEN(tcphdr),
|
|
TCPH_FLAGS(tcphdr) >> 5 & 1,
|
|
TCPH_FLAGS(tcphdr) >> 4 & 1,
|
|
TCPH_FLAGS(tcphdr) >> 3 & 1,
|
|
TCPH_FLAGS(tcphdr) >> 2 & 1,
|
|
TCPH_FLAGS(tcphdr) >> 1 & 1,
|
|
TCPH_FLAGS(tcphdr) & 1,
|
|
ntohs(tcphdr->wnd)));
|
|
tcp_debug_print_flags(TCPH_FLAGS(tcphdr));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("), win)\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("| 0x%04"X16_F" | %5"U16_F" | (chksum, urgp)\n",
|
|
ntohs(tcphdr->chksum), ntohs(tcphdr->urgp)));
|
|
LWIP_DEBUGF(TCP_DEBUG, ("+-------------------------------+\n"));
|
|
}
|
|
|
|
/**
|
|
* Print a tcp state for debugging purposes.
|
|
*
|
|
* @param s enum tcp_state to print
|
|
*/
|
|
void
|
|
tcp_debug_print_state(enum tcp_state s)
|
|
{
|
|
LWIP_DEBUGF(TCP_DEBUG, ("State: %s\n", tcp_state_str[s]));
|
|
}
|
|
|
|
/**
|
|
* Print tcp flags for debugging purposes.
|
|
*
|
|
* @param flags tcp flags, all active flags are printed
|
|
*/
|
|
void
|
|
tcp_debug_print_flags(u8_t flags)
|
|
{
|
|
if (flags & TCP_FIN) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("FIN "));
|
|
}
|
|
if (flags & TCP_SYN) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("SYN "));
|
|
}
|
|
if (flags & TCP_RST) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("RST "));
|
|
}
|
|
if (flags & TCP_PSH) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("PSH "));
|
|
}
|
|
if (flags & TCP_ACK) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("ACK "));
|
|
}
|
|
if (flags & TCP_URG) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("URG "));
|
|
}
|
|
if (flags & TCP_ECE) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("ECE "));
|
|
}
|
|
if (flags & TCP_CWR) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("CWR "));
|
|
}
|
|
LWIP_DEBUGF(TCP_DEBUG, ("\n"));
|
|
}
|
|
|
|
/**
|
|
* Print all tcp_pcbs in every list for debugging purposes.
|
|
*/
|
|
void
|
|
tcp_debug_print_pcbs(void)
|
|
{
|
|
struct tcp_pcb *pcb;
|
|
LWIP_DEBUGF(TCP_DEBUG, ("Active PCB states:\n"));
|
|
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
|
|
pcb->local_port, pcb->remote_port,
|
|
pcb->snd_nxt, pcb->rcv_nxt));
|
|
tcp_debug_print_state(pcb->state);
|
|
}
|
|
LWIP_DEBUGF(TCP_DEBUG, ("Listen PCB states:\n"));
|
|
for (pcb = (struct tcp_pcb *)tcp_listen_pcbs.pcbs; pcb != NULL; pcb = pcb->next) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
|
|
pcb->local_port, pcb->remote_port,
|
|
pcb->snd_nxt, pcb->rcv_nxt));
|
|
tcp_debug_print_state(pcb->state);
|
|
}
|
|
LWIP_DEBUGF(TCP_DEBUG, ("TIME-WAIT PCB states:\n"));
|
|
for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("Local port %"U16_F", foreign port %"U16_F" snd_nxt %"U32_F" rcv_nxt %"U32_F" ",
|
|
pcb->local_port, pcb->remote_port,
|
|
pcb->snd_nxt, pcb->rcv_nxt));
|
|
tcp_debug_print_state(pcb->state);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check state consistency of the tcp_pcb lists.
|
|
*/
|
|
s16_t
|
|
tcp_pcbs_sane(void)
|
|
{
|
|
struct tcp_pcb *pcb;
|
|
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != CLOSED", pcb->state != CLOSED);
|
|
LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != LISTEN", pcb->state != LISTEN);
|
|
LWIP_ASSERT("tcp_pcbs_sane: active pcb->state != TIME-WAIT", pcb->state != TIME_WAIT);
|
|
}
|
|
for (pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
|
|
LWIP_ASSERT("tcp_pcbs_sane: tw pcb->state == TIME-WAIT", pcb->state == TIME_WAIT);
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* TCP_DEBUG */
|
|
|
|
#endif /* LWIP_TCP */
|