esp-idf/components/efuse/esp32/esp_efuse_utility.c

270 wiersze
11 KiB
C

/*
* SPDX-FileCopyrightText: 2017-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_efuse_utility.h"
#include "soc/efuse_periph.h"
#include "hal/efuse_hal.h"
#include "esp_private/esp_clk.h"
#include "esp_log.h"
#include "assert.h"
#include "sdkconfig.h"
#include <sys/param.h>
static const char *TAG = "efuse";
#ifdef CONFIG_EFUSE_VIRTUAL
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
#endif // CONFIG_EFUSE_VIRTUAL
/*Range addresses to read blocks*/
const esp_efuse_range_addr_t range_read_addr_blocks[] = {
{EFUSE_BLK0_RDATA0_REG, EFUSE_BLK0_RDATA6_REG}, // range address of EFUSE_BLK0
{EFUSE_BLK1_RDATA0_REG, EFUSE_BLK1_RDATA7_REG}, // range address of EFUSE_BLK1
{EFUSE_BLK2_RDATA0_REG, EFUSE_BLK2_RDATA7_REG}, // range address of EFUSE_BLK2
{EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
};
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
/*Range addresses to write blocks (it is not real regs, it is a buffer) */
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][6]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
};
#ifndef CONFIG_EFUSE_VIRTUAL
/* Addresses to write blocks*/
const uint32_t start_write_addr[] = {
EFUSE_BLK0_WDATA0_REG,
EFUSE_BLK1_WDATA0_REG,
EFUSE_BLK2_WDATA0_REG,
EFUSE_BLK3_WDATA0_REG,
};
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len);
// Update Efuse timing configuration
static esp_err_t esp_efuse_set_timing(void)
{
uint32_t apb_freq_mhz = esp_clk_apb_freq() / 1000000;
efuse_hal_set_timing(apb_freq_mhz);
return ESP_OK;
}
#endif // ifndef CONFIG_EFUSE_VIRTUAL
// Efuse read operation: copies data from physical efuses to efuse read registers.
void esp_efuse_utility_clear_program_registers(void)
{
efuse_hal_clear_program_registers();
}
esp_err_t esp_efuse_utility_check_errors(void)
{
return ESP_OK;
}
// Burn values written to the efuse write registers
esp_err_t esp_efuse_utility_burn_chip(void)
{
return esp_efuse_utility_burn_chip_opt(false, true);
}
esp_err_t esp_efuse_utility_burn_chip_opt(bool ignore_coding_errors, bool verify_written_data)
{
esp_err_t error = ESP_OK;
#ifdef CONFIG_EFUSE_VIRTUAL
(void) ignore_coding_errors;
(void) verify_written_data;
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
int subblock = 0;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
}
}
#ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_utility_write_efuses_to_flash();
#endif
#else // CONFIG_EFUSE_VIRTUAL
if (esp_efuse_set_timing() != ESP_OK) {
ESP_LOGE(TAG, "Efuse fields are not burnt");
} else {
// Permanently update values written to the efuse write registers
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
bool need_burn_block = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block) != 0) {
need_burn_block = true;
break;
}
}
if (!need_burn_block) {
continue;
}
if (error) {
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
continue;
}
efuse_hal_clear_program_registers();
unsigned w_data_len;
unsigned r_data_len;
if (scheme == EFUSE_CODING_SCHEME_3_4) {
esp_efuse_utility_apply_34_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES);
r_data_len = ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES;
w_data_len = 32;
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
apply_repeat_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], 16);
r_data_len = ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES;
w_data_len = 32;
} else {
r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
w_data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
memcpy((void *)start_write_addr[num_block], (void *)range_write_addr_blocks[num_block].start, w_data_len);
}
uint32_t backup_write_data[8];
memcpy(backup_write_data, (void *)start_write_addr[num_block], w_data_len);
int repeat_burn_op = 1;
bool correct_written_data;
bool coding_error_before = !ignore_coding_errors && efuse_hal_is_coding_error_in_block(num_block);
if (coding_error_before) {
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
}
bool coding_error_occurred;
do {
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
efuse_hal_program(0); // BURN a block
bool coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
coding_error_occurred = !ignore_coding_errors && (coding_error_before != coding_error_after) && !coding_error_before;
if (coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
}
correct_written_data = (verify_written_data) ? esp_efuse_utility_is_correct_written_data(num_block, r_data_len) : true;
if (!correct_written_data || coding_error_occurred) {
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
memcpy((void *)start_write_addr[num_block], (void *)backup_write_data, w_data_len);
}
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
if (coding_error_occurred) {
ESP_LOGW(TAG, "Coding error was not fixed");
}
if (!correct_written_data) {
ESP_LOGE(TAG, "Written data are incorrect");
error = ESP_FAIL;
}
}
}
#endif // CONFIG_EFUSE_VIRTUAL
esp_efuse_utility_reset();
return error;
}
esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
{
if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) {
return ESP_ERR_INVALID_ARG;
}
while (in_bytes_len > 0) {
uint8_t out[8];
uint8_t xor = 0;
uint8_t mul = 0;
for (int i = 0; i < 6; i++) {
xor ^= in_bytes[i];
mul += (i + 1) * __builtin_popcount(in_bytes[i]);
}
memcpy(out, in_bytes, 6); // Data bytes
out[6] = xor;
out[7] = mul;
memcpy(out_words, out, 8);
in_bytes_len -= 6;
in_bytes += 6;
out_words += 2;
}
return ESP_OK;
}
#ifndef CONFIG_EFUSE_VIRTUAL
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
{
for (unsigned i = 0; i < 2; i++) {
memcpy(&out_words[i * 4], (uint32_t *)in_bytes, in_bytes_len);
}
}
#endif // CONFIG_EFUSE_VIRTUAL
static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
{
int i = 0;
for (uint32_t addr_rd_block = range_read_addr_blocks[num_block].start; addr_rd_block <= range_read_addr_blocks[num_block].end; addr_rd_block += 4, ++i) {
buf_r_data[i] = esp_efuse_utility_read_reg(num_block, i);
}
}
// This function just checkes that given data for blocks will not rise a coding issue during the burn operation.
// Encoded data will be set during the burn operation.
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
{
uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
if (scheme != EFUSE_CODING_SCHEME_NONE) {
bool is_write_data = false;
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
if (REG_READ(addr_wr_block)) {
is_write_data = true;
break;
}
}
if (is_write_data) {
read_r_data(num_block, (uint32_t*)buf_r_data);
uint8_t* buf_w_data = (uint8_t*)range_write_addr_blocks[num_block].start;
if (scheme == EFUSE_CODING_SCHEME_3_4) {
if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
return ESP_ERR_CODING;
}
for (int i = 0; i < ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES; ++i) {
if (buf_w_data[i] != 0) {
int st_offset_buf = (i / 6) * 6;
// check that place is free.
for (int n = st_offset_buf; n < st_offset_buf + 6; ++n) {
if (buf_r_data[n] != 0) {
ESP_LOGE(TAG, "Bits are not empty. Write operation is forbidden.");
return ESP_ERR_CODING;
}
}
}
}
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
for (int i = 4; i < 8; ++i) {
if (*((uint32_t*)buf_w_data + i) != 0) {
return ESP_ERR_CODING;
}
}
}
}
}
}
return ESP_OK;
}