/* * SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /*---------------------------------------------------------------------------------- This file contains ESP32 and ESP32S2 Depricated ADC APIs and functions -----------------------------------------------------------------------------------*/ #include "sdkconfig.h" #include "esp_types.h" #include "esp_log.h" #include "esp_intr_alloc.h" #include "driver/rtc_io.h" #include "hal/adc_ll.h" #include "hal/adc_types.h" #ifdef CONFIG_PM_ENABLE #include "esp_pm.h" #endif #include "adc.h" #include "esp_private/adc_cali.h" #include "freertos/FreeRTOS.h" #pragma GCC diagnostic ignored "-Wdeprecated-declarations" #include "driver/adc_types_deprecated.h" static const char *ADC_TAG = "ADC"; #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } \ }) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t adc_digi_arbiter_lock = NULL; #endif //CONFIG_PM_ENABLE #if CONFIG_IDF_TARGET_ESP32 /*--------------------------------------------------------------- ESP32 Depricated ADC APIs and functions ---------------------------------------------------------------*/ #define ADC_MEAS_NUM_LIM_DEFAULT (1) #define ADC_MAX_MEAS_NUM_DEFAULT (255) #define DIG_ADC_OUTPUT_FORMAT_DEFUALT (ADC_DIGI_FORMAT_12BIT) #define DIG_ADC_ATTEN_DEFUALT (ADC_ATTEN_DB_12) #define DIG_ADC_BIT_WIDTH_DEFUALT (ADC_WIDTH_BIT_12) esp_err_t adc_digi_init(void) { ADC_ENTER_CRITICAL(); adc_hal_init(); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_deinit(void) { adc_power_release(); ADC_ENTER_CRITICAL(); adc_hal_digi_deinit(NULL); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * Set adc output 16-bit-data format from digital controller. * * @param data_sel 1: [15] unit, [14:11] channel, [10:0] data, 11-bit-width at most. Only work under `ADC_LL_DIGI_CONV_BOTH_UNIT` or `ADC_LL_DIGI_CONV_ALTER_UNIT` mode. * 0: [15:12] channel, [11:0] data, 12-bit-width at most. Only work under `ADC_LL_DIGI_CONV_ONLY_ADC1` or `ADC_LL_DIGI_CONV_ONLY_ADC2` mode * @note see `adc_ll_digi_pattern_table_t` for more detail of data bit width */ static inline void adc_ll_digi_set_output_format(bool data_sel) { SYSCON.saradc_ctrl.data_sar_sel = data_sel; } static inline void adc_ll_digi_prepare_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern) { uint32_t tab; uint8_t index = pattern_index / 4; uint8_t offset = (pattern_index % 4) * 8; if (adc_n == ADC_NUM_1) { tab = SYSCON.saradc_sar1_patt_tab[index]; // Read old register value tab &= (~(0xFF000000 >> offset)); // clear old data tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data SYSCON.saradc_sar1_patt_tab[index] = tab; // Write back } else { // adc_n == ADC_NUM_2 tab = SYSCON.saradc_sar2_patt_tab[index]; // Read old register value tab &= (~(0xFF000000 >> offset)); // clear old data tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data SYSCON.saradc_sar2_patt_tab[index] = tab; // Write back } } void adc_digi_controller_reg_set(const adc_digi_config_t *cfg) { /* On ESP32, only support ADC1 */ switch (cfg->conv_mode) { case ADC_CONV_SINGLE_UNIT_1: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ONLY_ADC1); break; case ADC_CONV_SINGLE_UNIT_2: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ONLY_ADC2); break; case ADC_CONV_BOTH_UNIT: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_BOTH_UNIT); break; case ADC_CONV_ALTER_UNIT: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ALTER_UNIT); break; default: abort(); } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) { adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG); if (cfg->adc1_pattern_len) { adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len); for (uint32_t i = 0; i < cfg->adc1_pattern_len; i++) { adc_ll_digi_prepare_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]); } } } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) { adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_DIG); if (cfg->adc2_pattern_len) { adc_ll_digi_clear_pattern_table(ADC_NUM_2); adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len); for (uint32_t i = 0; i < cfg->adc2_pattern_len; i++) { adc_ll_digi_prepare_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]); } } } adc_ll_digi_set_output_format(cfg->format); if (cfg->conv_limit_en) { adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num); adc_ll_digi_convert_limit_enable(); } else { adc_ll_digi_convert_limit_disable(); } adc_ll_digi_set_data_source(ADC_I2S_DATA_SRC_ADC); } esp_err_t adc_digi_controller_config(const adc_digi_config_t *config) { adc_power_acquire(); ADC_ENTER_CRITICAL(); adc_digi_controller_reg_set(config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src) { ADC_CHECK(src < ADC_I2S_DATA_SRC_MAX, "ADC i2s data source error", ESP_ERR_INVALID_ARG); ADC_ENTER_CRITICAL(); adc_ll_digi_set_data_source(src); ADC_EXIT_CRITICAL(); return ESP_OK; } extern esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel); esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel) { if (adc_unit & ADC_UNIT_1) { ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_1)), "ADC1 not support DMA for now.", ESP_ERR_INVALID_ARG); ADC_CHANNEL_CHECK(ADC_NUM_1, channel); } if (adc_unit & ADC_UNIT_2) { ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_2)), "ADC2 not support DMA for now.", ESP_ERR_INVALID_ARG); ADC_CHANNEL_CHECK(ADC_NUM_2, channel); } adc_digi_pattern_table_t adc1_pattern[1]; adc_digi_pattern_table_t adc2_pattern[1]; adc_digi_config_t dig_cfg = { .conv_limit_en = ADC_MEAS_NUM_LIM_DEFAULT, .conv_limit_num = ADC_MAX_MEAS_NUM_DEFAULT, .format = DIG_ADC_OUTPUT_FORMAT_DEFUALT, .conv_mode = (adc_digi_convert_mode_t)adc_unit, }; if (adc_unit & ADC_UNIT_1) { adc1_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT; adc1_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT; adc1_pattern[0].channel = channel; dig_cfg.adc1_pattern_len = 1; dig_cfg.adc1_pattern = adc1_pattern; } if (adc_unit & ADC_UNIT_2) { adc2_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT; adc2_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT; adc2_pattern[0].channel = channel; dig_cfg.adc2_pattern_len = 1; dig_cfg.adc2_pattern = adc2_pattern; } adc_common_gpio_init(adc_unit, channel); ADC_ENTER_CRITICAL(); adc_hal_init(); adc_digi_controller_reg_set(&dig_cfg); ADC_EXIT_CRITICAL(); return ESP_OK; } #endif //#if CONFIG_IDF_TARGET_ESP32 #if CONFIG_IDF_TARGET_ESP32S2 /*--------------------------------------------------------------- ESP32S2 Depricated ADC functions and APIs ---------------------------------------------------------------*/ esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config) { if (adc_unit & ADC_UNIT_1) { return ESP_ERR_NOT_SUPPORTED; } ADC_ENTER_CRITICAL(); adc_hal_arbiter_config(config); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * Enable interrupt of adc digital controller by bitmask. * * @param adc_n ADC unit. * @param intr Interrupt bitmask. */ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr) { if (adc_n == ADC_NUM_1) { if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc1_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc1_done = 1; } } else { // adc_n == ADC_NUM_2 if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc2_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc2_done = 1; } } } esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_ll_digi_intr_enable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_ll_digi_intr_enable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } /** * Disable interrupt of adc digital controller by bitmask. * * @param adc_n ADC unit. * @param intr Interrupt bitmask. */ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr) { if (adc_n == ADC_NUM_1) { if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc1_thres = 0; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc1_done = 0; } } else { // adc_n == ADC_NUM_2 if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_ena.adc2_thres = 0; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_ena.adc2_done = 0; } } } esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_ll_digi_intr_disable(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_ll_digi_intr_disable(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } /** * Clear interrupt of adc digital controller by bitmask. * * @param adc_n ADC unit. * @param intr Interrupt bitmask. */ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr) { if (adc_n == ADC_NUM_1) { if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_clr.adc1_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_clr.adc1_done = 1; } } else { // adc_n == ADC_NUM_2 if (intr & ADC_DIGI_INTR_MASK_MONITOR) { APB_SARADC.int_clr.adc2_thres = 1; } if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) { APB_SARADC.int_clr.adc2_done = 1; } } } esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_ll_digi_intr_clear(ADC_NUM_1, intr_mask); } if (adc_unit & ADC_UNIT_2) { adc_ll_digi_intr_clear(ADC_NUM_2, intr_mask); } ADC_EXIT_CRITICAL(); return ESP_OK; } /** * Get interrupt status mask of adc digital controller. * * @param adc_n ADC unit. * @return * - intr Interrupt bitmask. */ static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n) { uint32_t int_st = APB_SARADC.int_st.val; uint32_t ret_msk = 0; if (adc_n == ADC_NUM_1) { if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) { ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE; } if (int_st & APB_SARADC_ADC1_THRES_INT_ST) { ret_msk |= ADC_DIGI_INTR_MASK_MONITOR; } } else { // adc_n == ADC_NUM_2 if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) { ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE; } if (int_st & APB_SARADC_ADC2_THRES_INT_ST_M) { ret_msk |= ADC_DIGI_INTR_MASK_MONITOR; } } return ret_msk; } uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit) { uint32_t ret = 0; ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { ret = adc_ll_digi_get_intr_status(ADC_NUM_1); } if (adc_unit & ADC_UNIT_2) { ret = adc_ll_digi_get_intr_status(ADC_NUM_2); } ADC_EXIT_CRITICAL(); return ret; } static uint8_t s_isr_registered = 0; static intr_handle_t s_adc_isr_handle = NULL; esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags) { ADC_CHECK((fn != NULL), "Parameter error", ESP_ERR_INVALID_ARG); ADC_CHECK(s_isr_registered == 0, "ADC ISR have installed, can not install again", ESP_FAIL); esp_err_t ret = esp_intr_alloc(ETS_APB_ADC_INTR_SOURCE, intr_alloc_flags, fn, arg, &s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 1; } return ret; } esp_err_t adc_digi_isr_deregister(void) { esp_err_t ret = ESP_FAIL; if (s_isr_registered) { ret = esp_intr_free(s_adc_isr_handle); if (ret == ESP_OK) { s_isr_registered = 0; } } return ret; } esp_err_t adc_digi_init(void) { adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); ADC_ENTER_CRITICAL(); adc_hal_init(); adc_hal_arbiter_config(&config); ADC_EXIT_CRITICAL(); adc_hal_calibration_init(ADC_NUM_1); adc_hal_calibration_init(ADC_NUM_2); return ESP_OK; } esp_err_t adc_digi_deinit(void) { #ifdef CONFIG_PM_ENABLE if (adc_digi_arbiter_lock) { esp_pm_lock_delete(adc_digi_arbiter_lock); adc_digi_arbiter_lock = NULL; } #endif adc_power_release(); ADC_ENTER_CRITICAL(); adc_hal_digi_deinit(NULL); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * @brief Reset FSM of adc digital controller. * * @return * - ESP_OK Success */ esp_err_t adc_digi_reset(void) { ADC_ENTER_CRITICAL(); adc_ll_digi_reset(); adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_clear_pattern_table(ADC_NUM_2); ADC_EXIT_CRITICAL(); return ESP_OK; } /** * Set adc output data format for digital controller. * * @param format Output data format. */ static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format) { APB_SARADC.ctrl.data_sar_sel = format; } static inline void adc_ll_digi_prepare_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern) { uint32_t tab; uint8_t index = pattern_index / 4; uint8_t offset = (pattern_index % 4) * 8; if (adc_n == ADC_NUM_1) { tab = APB_SARADC.sar1_patt_tab[index]; // Read old register value tab &= (~(0xFF000000 >> offset)); // clear old data tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data APB_SARADC.sar1_patt_tab[index] = tab; // Write back } else { // adc_n == ADC_NUM_2 tab = APB_SARADC.sar2_patt_tab[index]; // Read old register value tab &= (~(0xFF000000 >> offset)); // clear old data tab |= ((uint32_t)pattern.val << 24) >> offset; // Fill in the new data APB_SARADC.sar2_patt_tab[index] = tab; // Write back } } static void adc_digi_controller_reg_set(const adc_digi_config_t *cfg) { /* Single channel mode or multi channel mode. */ switch (cfg->conv_mode) { case ADC_CONV_SINGLE_UNIT_1: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ONLY_ADC1); break; case ADC_CONV_SINGLE_UNIT_2: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ONLY_ADC2); break; case ADC_CONV_BOTH_UNIT: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_BOTH_UNIT); break; case ADC_CONV_ALTER_UNIT: adc_ll_digi_set_convert_mode(ADC_LL_DIGI_CONV_ALTER_UNIT); break; default: abort(); } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) { if (cfg->adc1_pattern_len) { adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len); for (uint32_t i = 0; i < cfg->adc1_pattern_len; i++) { adc_ll_digi_prepare_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]); } } } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) { if (cfg->adc2_pattern_len) { adc_ll_digi_clear_pattern_table(ADC_NUM_2); adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len); for (uint32_t i = 0; i < cfg->adc2_pattern_len; i++) { adc_ll_digi_prepare_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]); } } } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) { adc_ll_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG); } if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) { adc_ll_set_controller(ADC_NUM_2, ADC_LL_CTRL_ARB); } adc_ll_digi_set_output_format(cfg->format); if (cfg->conv_limit_en) { adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num); adc_ll_digi_convert_limit_enable(); } else { adc_ll_digi_convert_limit_disable(); } adc_ll_digi_set_trigger_interval(cfg->interval); adc_ll_digi_controller_clk_div(cfg->dig_clk.div_num, cfg->dig_clk.div_b, cfg->dig_clk.div_a); adc_ll_digi_clk_sel(cfg->dig_clk.use_apll); adc_ll_digi_dma_set_eof_num(cfg->dma_eof_num); } esp_err_t adc_digi_controller_config(const adc_digi_config_t *config) { #ifdef CONFIG_PM_ENABLE esp_err_t err; if (adc_digi_arbiter_lock == NULL) { if (config->dig_clk.use_apll) { err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "adc_dma", &adc_digi_arbiter_lock); } else { err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &adc_digi_arbiter_lock); } if (err != ESP_OK) { adc_digi_arbiter_lock = NULL; ESP_LOGE(ADC_TAG, "ADC-DMA pm lock error"); return err; } } #endif //CONFIG_PM_ENABLE if (config->conv_mode & ADC_CONV_SINGLE_UNIT_1) { for (int i = 0; i < config->adc1_pattern_len; i++) { adc_cal_offset(ADC_NUM_1, config->adc1_pattern[i].channel, config->adc1_pattern[i].atten); } } if (config->conv_mode & ADC_CONV_SINGLE_UNIT_2) { for (int i = 0; i < config->adc2_pattern_len; i++) { adc_cal_offset(ADC_NUM_2, config->adc2_pattern[i].channel, config->adc2_pattern[i].atten); } } /* If enable digtal controller, adc xpd should always on. */ adc_power_acquire(); ADC_ENTER_CRITICAL(); adc_digi_controller_reg_set(config); ADC_EXIT_CRITICAL(); return ESP_OK; } #endif // #if CONFIG_IDF_TARGET_ESP32S2 #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3 /*--------------------------------------------------------------- ESP32S2 Depricated ADC functions and APIs ---------------------------------------------------------------*/ esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel) { gpio_num_t gpio_num = 0; //If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run if (adc_unit & ADC_UNIT_1) { ADC_CHANNEL_CHECK(ADC_NUM_1, channel); gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); } if (adc_unit & ADC_UNIT_2) { ADC_CHANNEL_CHECK(ADC_NUM_2, channel); gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); } return ESP_OK; } #endif //#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3