/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 OR MIT */ // // How It Works // ************ // 1. Components Overview // ====================== // Xtensa has useful feature: TRAX debug module. It allows recording program execution flow at run-time without disturbing CPU. // Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write // trace memory via its registers by means of JTAG, APB or ERI transactions. // ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory. // Chip allows muxing access to those trace memory blocks in such a way that while one block is accessed by CPUs another one can be accessed by host // by means of reading/writing TRAX registers via JTAG. Blocks muxing is configurable at run-time and allows switching trace memory blocks between // accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other. // This module implements application tracing feature based on above mechanisms. It allows to transfer arbitrary user data to/from // host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme. // ------>------ ----- (host components) ----- // | | | | // ------------------- ----------------------- ----------------------- ---------------- ------ --------- ----------------- // |trace data source|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data sink| // ------------------- ----------------------- ----------------------- ---------------- ------ --------- ----------------- // | | | | // | ------<------ ---------------- | // |<------------------------------------------->|TRAX_CTRL_REGS|<---->| // ---------------- // In general tracing goes in the following way. User application requests tracing module to send some data by calling esp_apptrace_buffer_get(), // module allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put(). // When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts. // While target application fills one TRAX block host reads another one via JTAG. // This module also allows communication in the opposite direction: from host to target. As it was said ESP32 and host can access different TRAX blocks // simultaneously, so while target writes trace data to one block host can write its own data (e.g. tracing commands) to another one then when // blocks are switched host receives trace data and target receives data written by host application. Target user application can read host data // by calling esp_apptrace_read() API. // To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing // can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores. // Overhead of this implementation on target CPU is produced only by allocating/managing buffers and copying of data. // On the host side special OpenOCD command must be used to read trace data. // 2. TRAX Registers layout // ======================== // This module uses two TRAX HW registers to communicate with host SW (OpenOCD). // - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields: // | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 | // 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host. // Host writes zero to this field when it finishes reading exposed block; // 21..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 2 bits; // 22 bit - 'host data present' flag. If set to one there is data from host, otherwise - no host data; // 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode; // - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then current CPU is changing TRAX registers and // this register holds address of the instruction which application will execute when it finishes with those registers modifications. // See 'Targets Connection' setion for details. // 3. Modes of operation // ===================== // This module supports two modes of operation: // - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block // exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest // trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them. // It can happen that system panic occurs when there are very small amount of data which are not exposed to host yet (e.g. crash just after the // TRAX block switch). In this case the previous 16KB of collected data will be dropped and host will see the latest, but very small piece of trace. // It can be insufficient to diagnose the problem. To avoid such situations there is menuconfig option // CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH // which controls the threshold for flushing data in case of panic. // - Streaming mode. Tracing module enters this mode when host connects to target and sets respective bits in control registers (per core). // In this mode before switching the block tracing module waits for the host to read all the data from the previously exposed block. // On panic tracing module also waits (timeout is configured via menuconfig via CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data. // 4. Communication Protocol // ========================= // 4.1 Trace Memory Blocks // ----------------------- // Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data available. // When current input memory block is filled it is exposed to host and 'block_len' and 'block_id' fields are updated in the control register. // Host reads new register value and according to it's value starts reading data from exposed block. Meanwhile target starts filling another trace block. // When host finishes reading the block it clears 'block_len' field in control register indicating to the target that it is ready to accept the next one. // If the host has some data to transfer to the target it writes them to trace memory block before clearing 'block_len' field. Then it sets // 'host_data_present' bit and clears 'block_len' field in control register. Upon every block switch target checks 'host_data_present' bit and if it is set // reads them to down buffer before writing any trace data to switched TRAX block. // 4.2 User Data Chunks Level // -------------------------- // Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in // multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation // that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing // module prepends all user data chunks with header which contains allocated buffer size and actual data length within it. OpenOCD command // which reads application traces reports error when it reads incomplete user data block. // Data which are transffered from host to target are also prepended with a header. Down channel data header is simple and consists of one two bytes field // containing length of host data following the header. // 4.3 Data Buffering // ------------------ // It takes some time for the host to read TRAX memory block via JTAG. In streaming mode it can happen that target has filled its TRAX block, but host // has not completed reading of the previous one yet. So in this case time critical tracing calls (which can not be delayed for too long time due to // the lack of free memory in TRAX block) can be dropped. To avoid such scenarios tracing module implements data buffering. Buffered data will be sent // to the host later when TRAX block switch occurs. The maximum size of the buffered data is controlled by menuconfig option // CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX. // 4.4 Target Connection/Disconnection // ----------------------------------- // When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set // on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control // register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing // non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with // the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU. // After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores // are set up they are resumed. Tracing starts without further intrusion into CPUs work. // When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm // as for connecting, but 'host connected' bits are cleared on ESP32 cores. // 5. Module Access Synchronization // ================================ // Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in // vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and // ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until // it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are: // - Support for timeouts. // - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion. // When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout. // So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU. // WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another. // WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting // on internal locks and for host to complete previous block reading, so if timeout value exceeds watchdog's one it can lead to the system reboot. // 6. Timeouts // =========== // Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in microseconds. // There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions: // - Trace data are locked by another task/ISR. When wating on trace data lock. // - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading. // When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed // time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned. #include "sdkconfig.h" #include "soc/soc.h" #include "soc/dport_reg.h" #include "soc/tracemem_config.h" #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 #include "soc/sensitive_reg.h" #endif #include "eri.h" #include "esp_private/trax.h" #include "esp_cpu.h" #include "esp_log.h" #include "esp_app_trace_membufs_proto.h" #include "esp_app_trace_port.h" // TRAX is disabled, so we use its registers for our own purposes // | 31..XXXXXX..24 | 23 .(host_connect). 23 | 22 .(host_data). 22| 21..(block_id)..15 | 14..(block_len)..0 | #define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT #define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC #define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL #define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK) #define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK) #define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0x7FUL #define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15) #define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) #define ESP_APPTRACE_TRAX_HOST_DATA (1 << 22) #define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23) #define ESP_APPTRACE_TRAX_INITED(_hw_) ((_hw_)->inited & (1 << esp_cpu_get_core_id())) #define ESP_APPTRACE_TRAX_BLOCK_SIZE (0x4000UL) /** TRAX HW transport data */ typedef struct { uint8_t inited; #if CONFIG_APPTRACE_LOCK_ENABLE esp_apptrace_lock_t lock; // sync lock #endif esp_apptrace_membufs_proto_data_t membufs; } esp_apptrace_trax_data_t; static esp_err_t esp_apptrace_trax_init(esp_apptrace_trax_data_t *hw_data); static esp_err_t esp_apptrace_trax_flush(esp_apptrace_trax_data_t *hw_data, esp_apptrace_tmo_t *tmo); static esp_err_t esp_apptrace_trax_flush_nolock(esp_apptrace_trax_data_t *hw_data, uint32_t min_sz, esp_apptrace_tmo_t *tmo); static uint8_t *esp_apptrace_trax_up_buffer_get(esp_apptrace_trax_data_t *hw_data, uint32_t size, esp_apptrace_tmo_t *tmo); static esp_err_t esp_apptrace_trax_up_buffer_put(esp_apptrace_trax_data_t *hw_data, uint8_t *ptr, esp_apptrace_tmo_t *tmo); static void esp_apptrace_trax_down_buffer_config(esp_apptrace_trax_data_t *hw_data, uint8_t *buf, uint32_t size); static uint8_t *esp_apptrace_trax_down_buffer_get(esp_apptrace_trax_data_t *hw_data, uint32_t *size, esp_apptrace_tmo_t *tmo); static esp_err_t esp_apptrace_trax_down_buffer_put(esp_apptrace_trax_data_t *hw_data, uint8_t *ptr, esp_apptrace_tmo_t *tmo); static bool esp_apptrace_trax_host_is_connected(esp_apptrace_trax_data_t *hw_data); static esp_err_t esp_apptrace_trax_buffer_swap_start(uint32_t curr_block_id); static esp_err_t esp_apptrace_trax_buffer_swap(uint32_t new_block_id); static esp_err_t esp_apptrace_trax_buffer_swap_end(uint32_t new_block_id, uint32_t prev_block_len); static bool esp_apptrace_trax_host_data_pending(void); const static char *TAG = "esp_apptrace"; static uint8_t * const s_trax_blocks[] = { (uint8_t *)TRACEMEM_BLK0_ADDR, (uint8_t *)TRACEMEM_BLK1_ADDR }; esp_apptrace_hw_t *esp_apptrace_jtag_hw_get(void **data) { #if CONFIG_APPTRACE_DEST_JTAG static esp_apptrace_membufs_proto_hw_t s_trax_proto_hw = { .swap_start = esp_apptrace_trax_buffer_swap_start, .swap = esp_apptrace_trax_buffer_swap, .swap_end = esp_apptrace_trax_buffer_swap_end, .host_data_pending = esp_apptrace_trax_host_data_pending, }; static esp_apptrace_trax_data_t s_trax_hw_data = { .membufs = { .hw = &s_trax_proto_hw, }, }; static esp_apptrace_hw_t s_trax_hw = { .init = (esp_err_t (*)(void *))esp_apptrace_trax_init, .get_up_buffer = (uint8_t *(*)(void *, uint32_t, esp_apptrace_tmo_t *))esp_apptrace_trax_up_buffer_get, .put_up_buffer = (esp_err_t (*)(void *, uint8_t *, esp_apptrace_tmo_t *))esp_apptrace_trax_up_buffer_put, .flush_up_buffer_nolock = (esp_err_t (*)(void *, uint32_t, esp_apptrace_tmo_t *))esp_apptrace_trax_flush_nolock, .flush_up_buffer = (esp_err_t (*)(void *, esp_apptrace_tmo_t *))esp_apptrace_trax_flush, .down_buffer_config = (void (*)(void *, uint8_t *, uint32_t ))esp_apptrace_trax_down_buffer_config, .get_down_buffer = (uint8_t *(*)(void *, uint32_t *, esp_apptrace_tmo_t *))esp_apptrace_trax_down_buffer_get, .put_down_buffer = (esp_err_t (*)(void *, uint8_t *, esp_apptrace_tmo_t *))esp_apptrace_trax_down_buffer_put, .host_is_connected = (bool (*)(void *))esp_apptrace_trax_host_is_connected, }; *data = &s_trax_hw_data; return &s_trax_hw; #else return NULL; #endif } static esp_err_t esp_apptrace_trax_lock(esp_apptrace_trax_data_t *hw_data, esp_apptrace_tmo_t *tmo) { #if CONFIG_APPTRACE_LOCK_ENABLE esp_err_t ret = esp_apptrace_lock_take(&hw_data->lock, tmo); if (ret != ESP_OK) { return ESP_FAIL; } #endif return ESP_OK; } static esp_err_t esp_apptrace_trax_unlock(esp_apptrace_trax_data_t *hw_data) { esp_err_t ret = ESP_OK; #if CONFIG_APPTRACE_LOCK_ENABLE ret = esp_apptrace_lock_give(&hw_data->lock); #endif return ret; } static inline void esp_apptrace_trax_hw_init(void) { // Stop trace, if any (on the current CPU) eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP); eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN); eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(0)); // this is for OpenOCD to let him know where stub entries vector is resided // must be read by host before any transfer using TRAX eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0); ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", esp_cpu_get_core_id()); } static inline void esp_apptrace_trax_select_memory_block(int block_num) { // select memory block to be exposed to the TRAX module (accessed by host) #if CONFIG_IDF_TARGET_ESP32 DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY); #elif CONFIG_IDF_TARGET_ESP32S2 WRITE_PERI_REG(DPORT_PMS_OCCUPY_3_REG, block_num ? BIT(TRACEMEM_MUX_BLK0_NUM-4) : BIT(TRACEMEM_MUX_BLK1_NUM-4)); #elif CONFIG_IDF_TARGET_ESP32S3 // select memory block to be exposed to the TRAX module (accessed by host) uint32_t block_bits = block_num ? TRACEMEM_CORE0_MUX_BLK_BITS(TRACEMEM_MUX_BLK0_NUM) : TRACEMEM_CORE0_MUX_BLK_BITS(TRACEMEM_MUX_BLK1_NUM); block_bits |= block_num ? TRACEMEM_CORE1_MUX_BLK_BITS(TRACEMEM_MUX_BLK0_NUM) : TRACEMEM_CORE1_MUX_BLK_BITS(TRACEMEM_MUX_BLK1_NUM); ESP_EARLY_LOGV(TAG, "Select block %d @ %p (bits 0x%x)", block_num, s_trax_blocks[block_num], block_bits); DPORT_WRITE_PERI_REG(SENSITIVE_INTERNAL_SRAM_USAGE_2_REG, block_bits); #endif } static inline void esp_apptrace_trax_memory_enable(void) { #if CONFIG_IDF_TARGET_ESP32 /* Enable trace memory on PRO CPU */ DPORT_WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M); #if CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE == 0 /* Enable trace memory on APP CPU */ DPORT_WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M); #endif #endif } /*****************************************************************************************/ /***************************** Apptrace HW iface *****************************************/ /*****************************************************************************************/ static esp_err_t esp_apptrace_trax_init(esp_apptrace_trax_data_t *hw_data) { int core_id = esp_cpu_get_core_id(); // 'esp_apptrace_trax_init()' is called on every core, so ensure to do main initialization only once if (core_id == 0) { esp_apptrace_mem_block_t mem_blocks_cfg[2] = { { .start = s_trax_blocks[0], .sz = ESP_APPTRACE_TRAX_BLOCK_SIZE }, { .start = s_trax_blocks[1], .sz = ESP_APPTRACE_TRAX_BLOCK_SIZE }, }; esp_err_t res = esp_apptrace_membufs_init(&hw_data->membufs, mem_blocks_cfg); if (res != ESP_OK) { ESP_APPTRACE_LOGE("Failed to init membufs proto (%d)!", res); return res; } #if CONFIG_APPTRACE_LOCK_ENABLE esp_apptrace_lock_init(&hw_data->lock); #endif esp_apptrace_trax_memory_enable(); esp_apptrace_trax_select_memory_block(0); } // init TRAX on this CPU esp_apptrace_trax_hw_init(); hw_data->inited |= 1 << core_id; return ESP_OK; } static uint8_t *esp_apptrace_trax_up_buffer_get(esp_apptrace_trax_data_t *hw_data, uint32_t size, esp_apptrace_tmo_t *tmo) { uint8_t *ptr; if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return NULL; } esp_err_t res = esp_apptrace_trax_lock(hw_data, tmo); if (res != ESP_OK) { return NULL; } ptr = esp_apptrace_membufs_up_buffer_get(&hw_data->membufs, size, tmo); // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data if (esp_apptrace_trax_unlock(hw_data) != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); } return ptr; } static esp_err_t esp_apptrace_trax_up_buffer_put(esp_apptrace_trax_data_t *hw_data, uint8_t *ptr, esp_apptrace_tmo_t *tmo) { if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return ESP_ERR_INVALID_STATE; } // Can avoid locking because esp_apptrace_membufs_up_buffer_put() just modifies buffer's header esp_err_t res = esp_apptrace_membufs_up_buffer_put(&hw_data->membufs, ptr, tmo); return res; } static void esp_apptrace_trax_down_buffer_config(esp_apptrace_trax_data_t *hw_data, uint8_t *buf, uint32_t size) { if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return; } esp_apptrace_membufs_down_buffer_config(&hw_data->membufs, buf, size); } static uint8_t *esp_apptrace_trax_down_buffer_get(esp_apptrace_trax_data_t *hw_data, uint32_t *size, esp_apptrace_tmo_t *tmo) { uint8_t *ptr; if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return NULL; } esp_err_t res = esp_apptrace_trax_lock(hw_data, tmo); if (res != ESP_OK) { return NULL; } ptr = esp_apptrace_membufs_down_buffer_get(&hw_data->membufs, size, tmo); // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data if (esp_apptrace_trax_unlock(hw_data) != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); } return ptr; } static esp_err_t esp_apptrace_trax_down_buffer_put(esp_apptrace_trax_data_t *hw_data, uint8_t *ptr, esp_apptrace_tmo_t *tmo) { if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return ESP_ERR_INVALID_STATE; } // Can avoid locking because esp_apptrace_membufs_down_buffer_put() does nothing /*esp_err_t res = esp_apptrace_trax_lock(hw_data, tmo); if (res != ESP_OK) { return res; }*/ esp_err_t res = esp_apptrace_membufs_down_buffer_put(&hw_data->membufs, ptr, tmo); // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data /*if (esp_apptrace_trax_unlock(hw_data) != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); }*/ return res; } static bool esp_apptrace_trax_host_is_connected(esp_apptrace_trax_data_t *hw_data) { if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return false; } return eri_read(ESP_APPTRACE_TRAX_CTRL_REG) & ESP_APPTRACE_TRAX_HOST_CONNECT ? true : false; } static esp_err_t esp_apptrace_trax_flush_nolock(esp_apptrace_trax_data_t *hw_data, uint32_t min_sz, esp_apptrace_tmo_t *tmo) { if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return ESP_ERR_INVALID_STATE; } return esp_apptrace_membufs_flush_nolock(&hw_data->membufs, min_sz, tmo); } static esp_err_t esp_apptrace_trax_flush(esp_apptrace_trax_data_t *hw_data, esp_apptrace_tmo_t *tmo) { if (!ESP_APPTRACE_TRAX_INITED(hw_data)) { return ESP_ERR_INVALID_STATE; } esp_err_t res = esp_apptrace_trax_lock(hw_data, tmo); if (res != ESP_OK) { return res; } res = esp_apptrace_membufs_flush_nolock(&hw_data->membufs, 0, tmo); // now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data if (esp_apptrace_trax_unlock(hw_data) != ESP_OK) { assert(false && "Failed to unlock apptrace data!"); } return res; } /*****************************************************************************************/ /************************** Membufs proto HW iface ***************************************/ /*****************************************************************************************/ static inline void esp_apptrace_trax_buffer_swap_lock(void) { extern uint32_t __esp_apptrace_trax_eri_updated; // indicate to host that we are about to update. // this is used only to place CPU into streaming mode at tracing startup // before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it // HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update, // here we set address to set bp at // enter ERI update critical section eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated); } static __attribute__((noinline)) void esp_apptrace_trax_buffer_swap_unlock(void) { // exit ERI update critical section eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0); // TODO: currently host sets breakpoint, use break instruction to stop; // it will allow to use ESP_APPTRACE_TRAX_STAT_REG for other purposes asm volatile ( " .global __esp_apptrace_trax_eri_updated\n" "__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start } static esp_err_t esp_apptrace_trax_buffer_swap_start(uint32_t curr_block_id) { esp_err_t res = ESP_OK; esp_apptrace_trax_buffer_swap_lock(); uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG); uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg; if (host_connected) { uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg); uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg); if (host_to_read != 0 || acked_block != (curr_block_id & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) { ESP_APPTRACE_LOGD("HC[%d]: Can not switch %x %d %x %x/%lx", esp_cpu_get_core_id(), ctrl_reg, host_to_read, acked_block, curr_block_id & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, curr_block_id); res = ESP_ERR_NO_MEM; goto _on_err; } } return ESP_OK; _on_err: esp_apptrace_trax_buffer_swap_unlock(); return res; } static esp_err_t esp_apptrace_trax_buffer_swap_end(uint32_t new_block_id, uint32_t prev_block_len) { uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG); uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg; eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(new_block_id) | host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(prev_block_len)); esp_apptrace_trax_buffer_swap_unlock(); return ESP_OK; } static esp_err_t esp_apptrace_trax_buffer_swap(uint32_t new_block_id) { esp_apptrace_trax_select_memory_block(new_block_id); return ESP_OK; } static bool esp_apptrace_trax_host_data_pending(void) { uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG); return (ctrl_reg & ESP_APPTRACE_TRAX_HOST_DATA) ? true : false; }