/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "esp_timer.h" #include "sdmmc_common.h" static const char* TAG = "sdmmc_cmd"; esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd) { if (card->host.command_timeout_ms != 0) { cmd->timeout_ms = card->host.command_timeout_ms; } else if (cmd->timeout_ms == 0) { cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS; } int slot = card->host.slot; ESP_LOGV(TAG, "sending cmd slot=%d op=%" PRIu32 " arg=%" PRIx32 " flags=%x data=%p blklen=%" PRIu32 " datalen=%" PRIu32 " timeout=%" PRIu32, slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, (uint32_t) cmd->blklen, (uint32_t) cmd->datalen, cmd->timeout_ms); esp_err_t err = (*card->host.do_transaction)(slot, cmd); if (err != 0) { ESP_LOGD(TAG, "cmd=%" PRIu32 ", sdmmc_req_run returned 0x%x", cmd->opcode, err); return err; } int state = MMC_R1_CURRENT_STATE(cmd->response); ESP_LOGV(TAG, "cmd response %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " err=0x%x state=%d", cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], cmd->error, state); return cmd->error; } esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd) { sdmmc_command_t app_cmd = { .opcode = MMC_APP_CMD, .flags = SCF_CMD_AC | SCF_RSP_R1, .arg = MMC_ARG_RCA(card->rca), }; esp_err_t err = sdmmc_send_cmd(card, &app_cmd); if (err != ESP_OK) { return err; } // Check APP_CMD status bit (only in SD mode) if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) { ESP_LOGW(TAG, "card doesn't support APP_CMD"); return ESP_ERR_NOT_SUPPORTED; } return sdmmc_send_cmd(card, cmd); } esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card) { sdmmc_command_t cmd = { .opcode = MMC_GO_IDLE_STATE, .flags = SCF_CMD_BC | SCF_RSP_R0, }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (host_is_spi(card)) { /* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in * SD Simplified spec v4.10). Some cards enter SD mode on first CMD0, * so don't expect the above command to succeed. * SCF_RSP_R1 flag below tells the lower layer to expect correct R1 * response (in SPI mode). */ (void) err; vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS); cmd.flags |= SCF_RSP_R1; err = sdmmc_send_cmd(card, &cmd); } if (err == ESP_OK) { vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS); } return err; } esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr) { const uint8_t pattern = 0xaa; /* any pattern will do here */ sdmmc_command_t cmd = { .opcode = SD_SEND_IF_COND, .arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern, .flags = SCF_CMD_BCR | SCF_RSP_R7, }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } uint8_t response = cmd.response[0] & 0xff; if (response != pattern) { ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern); return ESP_ERR_INVALID_RESPONSE; } return ESP_OK; } esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp) { esp_err_t err; /* If the host supports this, keep card clock enabled * from the start of ACMD41 until the card is idle. * (Ref. SD spec, section 4.4 "Clock control".) */ if (card->host.set_cclk_always_on != NULL) { err = card->host.set_cclk_always_on(card->host.slot, true); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: set_cclk_always_on (1) err=0x%x", __func__, err); return err; } ESP_LOGV(TAG, "%s: keeping clock on during ACMD41", __func__); } sdmmc_command_t cmd = { .arg = ocr, .flags = SCF_CMD_BCR | SCF_RSP_R3, .opcode = SD_APP_OP_COND }; int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES; int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS; for (; nretries != 0; --nretries) { bzero(&cmd, sizeof cmd); cmd.arg = ocr; cmd.flags = SCF_CMD_BCR | SCF_RSP_R3; if (!card->is_mmc) { /* SD mode */ cmd.opcode = SD_APP_OP_COND; err = sdmmc_send_app_cmd(card, &cmd); } else { /* MMC mode */ cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK; cmd.arg |= MMC_OCR_SECTOR_MODE; cmd.opcode = MMC_SEND_OP_COND; err = sdmmc_send_cmd(card, &cmd); } if (err != ESP_OK) { if (--err_cnt == 0) { ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err); goto done; } else { ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err); continue; } } // In SD protocol, card sets MEM_READY bit in OCR when it is ready. // In SPI protocol, card clears IDLE_STATE bit in R1 response. if (!host_is_spi(card)) { if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) || ocr == 0) { break; } } else { if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) { break; } } vTaskDelay(10 / portTICK_PERIOD_MS); } if (nretries == 0) { err = ESP_ERR_TIMEOUT; goto done; } if (ocrp) { *ocrp = MMC_R3(cmd.response); } err = ESP_OK; done: if (card->host.set_cclk_always_on != NULL) { esp_err_t err_cclk_dis = card->host.set_cclk_always_on(card->host.slot, false); if (err_cclk_dis != ESP_OK) { ESP_LOGE(TAG, "%s: set_cclk_always_on (2) err=0x%x", __func__, err); /* If we failed to disable clock, don't overwrite 'err' to return the original error */ } ESP_LOGV(TAG, "%s: clock always-on mode disabled", __func__); } return err; } esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp) { assert(ocrp); sdmmc_command_t cmd = { .opcode = SD_READ_OCR, .flags = SCF_CMD_BCR | SCF_RSP_R2 }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } *ocrp = SD_SPI_R3(cmd.response); return ESP_OK; } esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid) { assert(out_raw_cid); sdmmc_command_t cmd = { .opcode = MMC_ALL_SEND_CID, .flags = SCF_CMD_BCR | SCF_RSP_R2 }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t)); return ESP_OK; } esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid) { assert(out_cid); assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode"); assert(!card->is_mmc && "MMC cards are not supported in SPI mode"); sdmmc_response_t buf; sdmmc_command_t cmd = { .opcode = MMC_SEND_CID, .flags = SCF_CMD_READ | SCF_CMD_ADTC, .arg = 0, .data = &buf[0], .datalen = sizeof(buf) }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } sdmmc_flip_byte_order(buf, sizeof(buf)); return sdmmc_decode_cid(buf, out_cid); } esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca) { assert(out_rca); sdmmc_command_t cmd = { .opcode = SD_SEND_RELATIVE_ADDR, .flags = SCF_CMD_BCR | SCF_RSP_R6 }; /* MMC cards expect us to set the RCA. * Set RCA to 1 since we don't support multiple cards on the same bus, for now. */ uint16_t mmc_rca = 1; if (card->is_mmc) { cmd.arg = MMC_ARG_RCA(mmc_rca); } esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } *out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response); return ESP_OK; } esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd) { sdmmc_command_t cmd = { .opcode = MMC_SET_BLOCKLEN, .arg = csd->sector_size, .flags = SCF_CMD_AC | SCF_RSP_R1 }; return sdmmc_send_cmd(card, &cmd); } esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd) { /* The trick with SEND_CSD is that in SPI mode, it acts as a data read * command, while in SD mode it is an AC command with R2 response. */ sdmmc_response_t spi_buf; const bool is_spi = host_is_spi(card); sdmmc_command_t cmd = { .opcode = MMC_SEND_CSD, .arg = is_spi ? 0 : MMC_ARG_RCA(card->rca), .flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) : (SCF_CMD_AC | SCF_RSP_R2), .data = is_spi ? &spi_buf[0] : 0, .datalen = is_spi ? sizeof(spi_buf) : 0, }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } uint32_t* ptr = cmd.response; if (is_spi) { sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf)); ptr = spi_buf; } if (card->is_mmc) { err = sdmmc_mmc_decode_csd(cmd.response, out_csd); } else { err = sdmmc_decode_csd(ptr, out_csd); } return err; } esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca) { /* Don't expect to see a response when de-selecting a card */ uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1; sdmmc_command_t cmd = { .opcode = MMC_SELECT_CARD, .arg = MMC_ARG_RCA(rca), .flags = SCF_CMD_AC | response }; return sdmmc_send_cmd(card, &cmd); } esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr) { size_t datalen = 8; esp_err_t err = ESP_FAIL; void *buf = NULL; size_t actual_size = 0; esp_dma_mem_info_t dma_mem_info; card->host.get_dma_info(card->host.slot, &dma_mem_info); err = esp_dma_capable_malloc(datalen, &dma_mem_info, &buf, &actual_size); if (err != ESP_OK) { return err; } sdmmc_command_t cmd = { .data = buf, .datalen = datalen, .buflen = actual_size, .blklen = datalen, .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1, .opcode = SD_APP_SEND_SCR }; err = sdmmc_send_app_cmd(card, &cmd); if (err == ESP_OK) { err = sdmmc_decode_scr(buf, out_scr); } free(buf); return err; } esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width) { sdmmc_command_t cmd = { .opcode = SD_APP_SET_BUS_WIDTH, .flags = SCF_RSP_R1 | SCF_CMD_AC, .arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1, }; return sdmmc_send_app_cmd(card, &cmd); } esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable) { assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode"); sdmmc_command_t cmd = { .opcode = SD_CRC_ON_OFF, .arg = crc_enable ? 1 : 0, .flags = SCF_CMD_AC | SCF_RSP_R1 }; return sdmmc_send_cmd(card, &cmd); } esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status) { sdmmc_command_t cmd = { .opcode = MMC_SEND_STATUS, .arg = MMC_ARG_RCA(card->rca), .flags = SCF_CMD_AC | SCF_RSP_R1 }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { return err; } if (out_status) { if (host_is_spi(card)) { *out_status = SD_SPI_R2(cmd.response); } else { *out_status = MMC_R1(cmd.response); } } return ESP_OK; } esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src, size_t start_block, size_t block_count) { if (block_count == 0) { return ESP_OK; } esp_err_t err = ESP_OK; size_t block_size = card->csd.sector_size; esp_dma_mem_info_t dma_mem_info; card->host.get_dma_info(card->host.slot, &dma_mem_info); #ifdef SOC_SDMMC_PSRAM_DMA_CAPABLE dma_mem_info.extra_heap_caps |= MALLOC_CAP_SPIRAM; #endif if (esp_dma_is_buffer_alignment_satisfied(src, block_size * block_count, dma_mem_info) #if !SOC_SDMMC_PSRAM_DMA_CAPABLE && !esp_ptr_external_ram(src) #endif ) { err = sdmmc_write_sectors_dma(card, src, start_block, block_count, block_size * block_count); } else { // SDMMC peripheral needs DMA-capable buffers. Split the write into // separate single block writes, if needed, and allocate a temporary // DMA-capable buffer. void *tmp_buf = NULL; size_t actual_size = 0; // Clear the SPIRAM flag. We don't want to force the allocation into SPIRAM, the allocator // will decide based on the buffer size and memory availability. dma_mem_info.extra_heap_caps &= ~MALLOC_CAP_SPIRAM; err = esp_dma_capable_malloc(block_size, &dma_mem_info, &tmp_buf, &actual_size); if (err != ESP_OK) { return err; } const uint8_t* cur_src = (const uint8_t*) src; for (size_t i = 0; i < block_count; ++i) { memcpy(tmp_buf, cur_src, block_size); cur_src += block_size; err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d", __func__, err, start_block, i); break; } } free(tmp_buf); } return err; } esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src, size_t start_block, size_t block_count, size_t buffer_len) { if (start_block + block_count > card->csd.capacity) { return ESP_ERR_INVALID_SIZE; } size_t block_size = card->csd.sector_size; sdmmc_command_t cmd = { .flags = SCF_CMD_ADTC | SCF_RSP_R1, .blklen = block_size, .data = (void*) src, .datalen = block_count * block_size, .buflen = buffer_len, .timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS }; if (block_count == 1) { cmd.opcode = MMC_WRITE_BLOCK_SINGLE; } else { cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE; } if (card->ocr & SD_OCR_SDHC_CAP) { cmd.arg = start_block; } else { cmd.arg = start_block * block_size; } esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err); return err; } uint32_t status = 0; size_t count = 0; int64_t yield_delay_us = 100 * 1000; // initially 100ms int64_t t0 = esp_timer_get_time(); int64_t t1 = 0; /* SD mode: wait for the card to become idle based on R1 status */ while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) { t1 = esp_timer_get_time(); if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) { ESP_LOGE(TAG, "write sectors dma - timeout"); return ESP_ERR_TIMEOUT; } if (t1 - t0 > yield_delay_us) { yield_delay_us *= 2; vTaskDelay(1); } err = sdmmc_send_cmd_send_status(card, &status); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err); return err; } if (++count % 16 == 0) { ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", (uint32_t) count); } } /* SPI mode: although card busy indication is based on the busy token, * SD spec recommends that the host checks the results of programming by sending * SEND_STATUS command. Some of the conditions reported in SEND_STATUS are not * reported via a data error token. */ if (host_is_spi(card)) { err = sdmmc_send_cmd_send_status(card, &status); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err); return err; } if (status & SD_SPI_R2_CARD_LOCKED) { ESP_LOGE(TAG, "%s: write failed, card is locked: r2=0x%04" PRIx32, __func__, status); return ESP_ERR_INVALID_STATE; } if (status != 0) { ESP_LOGE(TAG, "%s: card status indicates an error after write operation: r2=0x%04" PRIx32, __func__, status); return ESP_ERR_INVALID_RESPONSE; } } return ESP_OK; } esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst, size_t start_block, size_t block_count) { if (block_count == 0) { return ESP_OK; } esp_err_t err = ESP_OK; size_t block_size = card->csd.sector_size; esp_dma_mem_info_t dma_mem_info; card->host.get_dma_info(card->host.slot, &dma_mem_info); if (esp_dma_is_buffer_alignment_satisfied(dst, block_size * block_count, dma_mem_info) #if !SOC_SDMMC_PSRAM_DMA_CAPABLE && !esp_ptr_external_ram(dst) #endif ) { err = sdmmc_read_sectors_dma(card, dst, start_block, block_count, block_size * block_count); } else { // SDMMC peripheral needs DMA-capable buffers. Split the read into // separate single block reads, if needed, and allocate a temporary // DMA-capable buffer. void *tmp_buf = NULL; size_t actual_size = 0; err = esp_dma_capable_malloc(block_size, &dma_mem_info, &tmp_buf, &actual_size); if (err != ESP_OK) { return err; } uint8_t* cur_dst = (uint8_t*) dst; for (size_t i = 0; i < block_count; ++i) { err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d", __func__, err, start_block, i); break; } memcpy(cur_dst, tmp_buf, block_size); cur_dst += block_size; } free(tmp_buf); } return err; } esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst, size_t start_block, size_t block_count, size_t buffer_len) { if (start_block + block_count > card->csd.capacity) { return ESP_ERR_INVALID_SIZE; } size_t block_size = card->csd.sector_size; sdmmc_command_t cmd = { .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1, .blklen = block_size, .data = (void*) dst, .datalen = block_count * block_size, .buflen = buffer_len, }; if (block_count == 1) { cmd.opcode = MMC_READ_BLOCK_SINGLE; } else { cmd.opcode = MMC_READ_BLOCK_MULTIPLE; } if (card->ocr & SD_OCR_SDHC_CAP) { cmd.arg = start_block; } else { cmd.arg = start_block * block_size; } esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err); return err; } uint32_t status = 0; size_t count = 0; int64_t yield_delay_us = 100 * 1000; // initially 100ms int64_t t0 = esp_timer_get_time(); int64_t t1 = 0; /* SD mode: wait for the card to become idle based on R1 status */ while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) { t1 = esp_timer_get_time(); if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) { ESP_LOGE(TAG, "read sectors dma - timeout"); return ESP_ERR_TIMEOUT; } if (t1 - t0 > yield_delay_us) { yield_delay_us *= 2; vTaskDelay(1); } err = sdmmc_send_cmd_send_status(card, &status); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err); return err; } if (++count % 16 == 0) { ESP_LOGV(TAG, "waiting for card to become ready (%d)", count); } } return ESP_OK; } esp_err_t sdmmc_erase_sectors(sdmmc_card_t* card, size_t start_sector, size_t sector_count, sdmmc_erase_arg_t arg) { if (sector_count == 0) { return ESP_OK; } if (start_sector + sector_count > card->csd.capacity) { return ESP_ERR_INVALID_SIZE; } uint32_t cmd38_arg; if (arg == SDMMC_ERASE_ARG) { cmd38_arg = card->is_mmc ? SDMMC_MMC_TRIM_ARG : SDMMC_SD_ERASE_ARG; } else { cmd38_arg = card->is_mmc ? SDMMC_MMC_DISCARD_ARG : SDMMC_SD_DISCARD_ARG; } /* validate the CMD38 argument against card supported features */ if (card->is_mmc) { if ((cmd38_arg == SDMMC_MMC_TRIM_ARG) && (sdmmc_can_trim(card) != ESP_OK)) { return ESP_ERR_NOT_SUPPORTED; } if ((cmd38_arg == SDMMC_MMC_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) { return ESP_ERR_NOT_SUPPORTED; } } else { // SD card if ((cmd38_arg == SDMMC_SD_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) { return ESP_ERR_NOT_SUPPORTED; } } /* default as block unit address */ size_t addr_unit_mult = 1; if (!(card->ocr & SD_OCR_SDHC_CAP)) { addr_unit_mult = card->csd.sector_size; } /* prepare command to set the start address */ sdmmc_command_t cmd = { .flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_WAIT_BUSY, .opcode = card->is_mmc ? MMC_ERASE_GROUP_START : SD_ERASE_GROUP_START, .arg = (start_sector * addr_unit_mult), }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_START) returned 0x%x", __func__, err); return err; } /* prepare command to set the end address */ cmd.opcode = card->is_mmc ? MMC_ERASE_GROUP_END : SD_ERASE_GROUP_END; cmd.arg = ((start_sector + (sector_count - 1)) * addr_unit_mult); err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_END) returned 0x%x", __func__, err); return err; } /* issue erase command */ memset((void *)&cmd, 0 , sizeof(sdmmc_command_t)); cmd.flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_WAIT_BUSY; cmd.opcode = MMC_ERASE; cmd.arg = cmd38_arg; cmd.timeout_ms = sdmmc_get_erase_timeout_ms(card, cmd38_arg, sector_count * card->csd.sector_size / 1024); err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE) returned 0x%x", __func__, err); return err; } if (host_is_spi(card)) { uint32_t status; err = sdmmc_send_cmd_send_status(card, &status); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err); return err; } if (status != 0) { ESP_LOGE(TAG, "%s: card status indicates an error after erase operation: r2=0x%04" PRIx32, __func__, status); return ESP_ERR_INVALID_RESPONSE; } } return ESP_OK; } esp_err_t sdmmc_can_discard(sdmmc_card_t* card) { if ((card->is_mmc) && (card->ext_csd.rev >= EXT_CSD_REV_1_6)) { return ESP_OK; } // SD card if ((!card->is_mmc) && !host_is_spi(card) && (card->ssr.discard_support == 1)) { return ESP_OK; } return ESP_FAIL; } esp_err_t sdmmc_can_trim(sdmmc_card_t* card) { if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_GB_CL_EN)) { return ESP_OK; } return ESP_FAIL; } esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t* card) { if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_SANITIZE)) { return ESP_OK; } return ESP_FAIL; } esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t* card, uint32_t timeout_ms) { esp_err_t err; uint8_t index = EXT_CSD_SANITIZE_START; uint8_t set = EXT_CSD_CMD_SET_NORMAL; uint8_t value = 0x01; if (sdmmc_mmc_can_sanitize(card) != ESP_OK) { return ESP_ERR_NOT_SUPPORTED; } /* * A Sanitize operation is initiated by writing a value to the extended * CSD[165] SANITIZE_START. While the device is performing the sanitize * operation, the busy line is asserted. * SWITCH command is used to write the EXT_CSD register. */ sdmmc_command_t cmd = { .opcode = MMC_SWITCH, .arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set, .flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY, .timeout_ms = timeout_ms, }; err = sdmmc_send_cmd(card, &cmd); if (err == ESP_OK) { //check response bit to see that switch was accepted if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) { err = ESP_ERR_INVALID_RESPONSE; } } return err; } esp_err_t sdmmc_full_erase(sdmmc_card_t* card) { sdmmc_erase_arg_t arg = SDMMC_SD_ERASE_ARG; // erase by default for SD card esp_err_t err; if (card->is_mmc) { arg = sdmmc_mmc_can_sanitize(card) == ESP_OK ? SDMMC_MMC_DISCARD_ARG: SDMMC_MMC_TRIM_ARG; } err = sdmmc_erase_sectors(card, 0, card->csd.capacity, arg); if ((err == ESP_OK) && (arg == SDMMC_MMC_DISCARD_ARG)) { uint32_t timeout_ms = sdmmc_get_erase_timeout_ms(card, SDMMC_MMC_DISCARD_ARG, card->csd.capacity * ((uint64_t) card->csd.sector_size) / 1024); return sdmmc_mmc_sanitize(card, timeout_ms); } return err; } esp_err_t sdmmc_get_status(sdmmc_card_t* card) { uint32_t stat; return sdmmc_send_cmd_send_status(card, &stat); }